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We discuss the statistical mechanics of a system of self-gravitating fermions in a space of dimensionD. We
plot the caloric curves of the self-gravitating Fermi gas giving the temperature as a function of energy and
investigate the nature of phase transitions as a function of the dimension of space. We consider stable states
(global entropy maxima) as well as metastable states(local entropy maxima). We show that forDù4, there
exists a critical temperature(for sufficiently large systems) and a critical energy below which the system cannot
be found in statistical equilibrium. Therefore, forDù4, quantum mechanics cannot stabilize matter against
gravitational collapse. This is similar to a result found by Ehrenfest(1917) at the atomic level for Coulomb
forces. This makes the dimensionD=3 of our Universe very particular with possible implications regarding the
anthropic principle. Our study joins a long tradition of scientific and philosophical papers that examined how
the dimension of space affects the laws of physics.
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I. INTRODUCTION

The statistical mechanics of systems with long-range in-
teractions is currently a topic of active research[1]. Among
long-range interactions, gravitational force plays a funda-
mental role. Therefore, the developement of statistical me-
chanics for self-gravitating systems is of considerable inter-
est[2]. In this context, a system of self-gravitating fermions
enclosed within a box provides an interesting model which
can be studied in great detail[3,4]. This model incorporates
an effective small-scale cutoff played by the Pauli exclusion
principle and a large-scale cutoff played by the confining box
(other forms of confinement could also be considered). The
statistical mechanics of this system is rigorously justified and
presents a lot of interesting features which are of interest in
statistical mechanics[5] and astrophysics[6]. Its detailed
study is therefore important at a conceptual and practical
level.

In a previous paper[4], we discussed the nature of phase
transitions in the self-gravitating Fermi gas in a space of
dimensionD=3. Our study was performed in both microca-
nonical and canonical ensembles and considered an arbitrary
degree of degeneracy relative to the system size. This study
completes previous investigations by Hertel and Thirring[3],
who worked in the canonical ensemble and considered small
system sizes. At high temperatures and high energies, the
system is in a gaseous phase and quantum effects are com-
pletely negligible. At some transition temperatureTt or tran-
sition energyEt (for sufficiently large system sizes), a first-
order phase transition is expected to occur and drive the
system towards a condensed phase. However, gaseous states
are still metastable below this transition point and gravita-
tional collapse will rather occur at a smaller critical tempera-
tureTc (Jeans temperature) [7] or critical energyEc (Antonov
energy) [8,9,2] at which the metastable branch disappears
(spinodal point). The end state of the collapse is a compact
object with a “core-halo” structure. Typically, it consists of a
degenerate nucleus surrounded by a “vapor.” The nucleus
(condensate) resembles a white dwarf star[10]. At nonzero
temperature, this compact object is surrounded by a dilute

atmosphere. Therefore, when quantum mechanics is properly
accounted for, there exists an equilibrium state(global maxi-
mum of entropy or free energy) for each value of accessible
energy and temperature. The condensate results from the bal-
ance between gravitational contraction and quantum pres-
sure. As first noticed by Fowler[11] in his classical theory of
white dwarf stars, quantum mechanics is able to stabilize
matter against gravitational collapse.

One aim of this paper is to show that this conclusion is no
longer valid in a space of dimensionDù4. For a system of
massM enclosed within a box of radiusR, there exists a
critical temperature(for sufficiently largeR) and a critical
energy below which the system cannot be found at statistical
equilibrium. This is like the Antonov instability for self-
gravitating classical particles inD=3 [8,9,2] but it now oc-
curs for fermions. Therefore, quantum mechanics cannot ar-
rest gravitational collapse inDù4. This result is connected
to our previous observation[12] that a classical white dwarf
star (a polytrope of indexn3/2=D /2) becomes unstable for
Dù4. Interestingly, this result is similar to that of Ehrenfest
[13], who considered the stability of atomic structures(in
Bohr’s model) for different dimensions of space and con-
cluded thatD,4 is required for stability. In this paper, we
determine the caloric curve of the self-gravitating Fermi gas
for an arbitrary dimension of space and an arbitrary degree of
degeneracy(or system size). We exhibit particular dimen-
sions that play a special role in the problem. The dimension
D=2 is critical because the results established forDÞ2 can-
not be directly extended toD=2 [14]. Furthermore, in
D=2 the radius of a white dwarf star is independent of its
mass and given in terms of fundamental constants by
R=0.27hm−3/2G−1/2. The dimensionD=4 is also critical be-
cause it is the dimension at which classical white dwarf stars
become unstable. At this particular dimension, their mass is
independent of radius and can be expressed in terms of fun-
damental constants asM =1.44310−2h4m−5G−2. Mathemati-
cally, this is similar to Chandrasekhar’s limiting mass[15]
for relativistic white dwarf stars inD=3. The dimension
D=2s1+Î2d is also particular because at this dimension, the
white dwarf stars cease to be self-confined and have infinite
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mass. Finally,D=10 is the dimension at which the caloric
curve of classical isothermal spheres loses its characteristic
spiral nature[14]. Although we systematically explore all
dimensions of space in order to have a complete picture of
the problem, only dimensionsD=1, D=2, andD=3 area
priori of physical interest. The dimensionD=1 is considered
in cosmology and in connection with shell models, and the
dimensionD=2 can be useful to describe filaments or ring
structures with high aspect ratio. Two-dimensional gravity is
also of interest for its properties of conformal invariance and
for its relation with two-dimensional turbulence[5]. Nonin-
teger dimensions can arise if the system has a fractal nature.

The paper is organized as follows. In Sec. II, we deter-
mine the thermodynamic parameters of the self-gravitating
Fermi gas in dimensionD. The Fermi-Dirac entropy is intro-
duced from a combinatorial analysis. In Sec. III, we consider
asymptotic limits corresponding to the classical self-
gravitating gas and to completely degenerate structures
(white dwarfs). We emphasize the importance of metastable
states in astrophysics and explain how they can be taken into
account in the theory(see also[16]). We also discuss the
thermodynamic limit of the self-gravitating quantum gas and
compare it with the thermodynamic limit of the self-
gravitating classical gas in the dilute limit[17]. In Sec. IV,
we provide a gallery of caloric curves of the self-gravitating
Fermi gas in different dimensions of space. Rigorous math-
ematical results on the existence of solutions of the Fermi-
Poisson equation have been obtained by Stańczy [18]. Fi-
nally, in the Conclusion, we place our study in a more
general perspective. We give a short historical account of
scientific and philosophical papers that examined the role
played by the dimension of space in determining the form of
the laws of physics. These works tend to indicate that the
dimensionD=3 of our Universe is very particular. This is
also the result that we reach in our study. These remarks can
have implications regarding the anthropic principle.

II. THERMODYNAMICS OF SELF-GRAVITATING
D-FERMIONS

A. The Fermi-Dirac distribution

We consider a system ofN fermions interacting via New-
tonian gravity in a space of dimensionD. We assume that the
mass of the configuration is sufficiently small so as to ignore
relativistic effects. Letfsr ,v ,td denote the distribution func-
tion of the system, i.e.,fsr ,v ,tddDrdDv gives the mass of
particles whose position and velocity are in the cellsr ,v ; r
+dDr ,v+dDvd at time t. The integral off over the velocity
determines the spatial density

r =E fdDv, s1d

and the total mass of the configuration is given by

M =E rdDr , s2d

where the integral extends over the entire domain. On the
other hand, in the mean-field approximation, the total energy
of the system can be expressed as

E =
1

2
E fv2dDrdDv +

1

2
E rFdDr = K + W, s3d

where K is the kinetic energy andW the potential energy.
The gravitational potentialF is related to the density by the
Newton-Poisson equation

DF = SDGr, s4d

whereSD=2pD/2/GsD /2d is the surface of a unit sphere in a
space of dimensionD, and G is the constant of gravity
(which depends on the dimension of space).

We now wish to determine the most probable distribution
of self-gravitating fermions at statistical equilibrium. To that
end, we divide the individual phase spacehr ,vj into a very
large number of microcells with sizesh/mdD, whereh is the
Planck constant(the massm of the particles arises because
we usev instead ofp as a phase-space coordinate). A micro-
cell is occupied either by 0 or 1 fermion(or g=2s+1 fermi-
ons if we account for the spin). We shall now group these
microcells into macrocells each of which contains many mi-
crocells but remains nevertheless small compared to the
phase-space extension of the whole system. We calln the
number of microcells in a macrocell. Consider the configu-
ration hnij where there aren1 fermions in the first macrocell,
n2 in the second macrocell, etc., each occupying one of then
microcells with no cohabitation. The number of ways to as-
sign a microcell to the first element of a macrocell isn, to the
secondn−1, etc. Since the particles are indistinguishable, the
number of ways to assign microcells to allni particles in a
macrocell is thus

1

ni!

n!

sn − nid!
. s5d

To obtain the number of microstates corresponding to the
macrostatehnij defined by the number of fermionsni in each
macrocell(irrespective of their precise position in the cell),
we need to take the product of terms such as(5) over all
macrocells. Thus, the number of microstates corresponding
to the macrostatehnij, i.e., the probability of the statehnij, is

Wshnijd = p
i

n!

ni ! sn − nid!
. s6d

This is the Fermi-Dirac statistics. As is customary, we define
the entropy of the statehnij by

Sshnijd = ln Wshnijd. s7d

It is convenient here to return to a representation in terms of
the distribution function giving the phase-space density in
the ith macrocell,

f i = fsr i,vid =
nim

nS h

m
DD =

nih0

n
, s8d

where we have definedh0=mD+1/hD, which represents the
maximum value off due to Pauli’s exclusion principle. Now,
using the Stirling formula, we have
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ln Wshnijd

. o
i

nsln n − 1d − nX f i

h0
Fln Snf i

h0
D − 1G

+ S1 −
f i

h0
DFlnHnS1 −

f i

h0
DJ − 1GC . s9d

Passing to the continuum limitn→0, we obtain the usual
expression of the Fermi-Dirac entropy,

S= − kBE H f

h0
ln

f

h0
+ S1 −

f

h0
DlnS1 −

f

h0
DJdDrdDv

S h

m
DD .

s10d

If we take into account the spin of the particles, the above
expression remains valid but the maximum value of the dis-
tribution function is nowh0=gmD+1/hD, whereg=2s+1 is
the spin multiplicity of the quantum states(the phase-space
element has also to be multiplied byg). An expression of
entropy similar to Eq.(10), but arising for a completely dif-
ferent reason, has been introduced by Lynden-Bell in the
context of the violent relaxation of collisionless stellar sys-
tems [19–21]. In that context,h0 represents the maximum
value of the initial distribution function, and the actual dis-
tribution function (coarse-grained) must always satisfy

f̄ øh0 by virtue of the Liouville theorem. This is the origin
of the “effective” exclusion principle in Lynden-Bell’s
theory, which has nothing to do with quantum mechanics.
Since the particles(stars) are distinguishable classical objects
(but subject to an exclusion principle in the collisionless re-
gime), Lynden-Bell’s statistics corresponds to a fourth form
of statistics(in addition to the Maxwell-Boltzmann, Fermi-
Dirac, and Bose-Einstein statistics). However, for a single
type of phase elementh0, it leads to the same results as the
Fermi-Dirac statistics. We also recall that in the nondegener-
ate (or classical) limit f !h0, the Fermi-Dirac entropy(10)
reduces to the Boltzmann entropy,

S= − kBE f

m
Fln S fhD

gmD+1D − 1GdDr dDv. s11d

Now that the entropy has been precisely justified, the sta-
tistical equilibrium state(most probable state) of self-
gravitating fermions is obtained by maximizing the Fermi-
Dirac entropy(10) at fixed mass(2) and energy(3),

Max Sffg u Effg = E, Mffg = M . s12d

Introducing Lagrange multipliers 1/T (inverse temperature)
and m (chemical potential) to satisfy these constraints, and
writing the variational principle in the form

dS−
1

T
dE +

m

T
dN = 0, s13d

we find that thecritical points of entropy correspond to the
Fermi-Dirac distribution

f =
h0

1 + lebmfsn2/2d+Fg
, s14d

wherel=e−bm is a strictly positive constant(inverse fugac-
ity) and b=1/kBT is the inverse temperature. Clearly, the
distribution function satisfiesf øh0, which is a consequence
of Pauli’s exclusion principle.

So far, we have assumed that the system is isolated so that
the energy is conserved. If now the system is in contact with
a thermal bath(e.g., a radiation background) fixing the tem-
perature, the statistical equilibrium state minimizes the free
energy F=E−TS, or maximizes the Massieu function
J=S−bE, at fixed mass and temperature,

Max Jffg uMffg = M . s15d

Introducing Lagrange multipliers and writing the variational
principle in the form

dJ +
m

T
dN = 0, s16d

we find that thecritical pointsof free energy are again given
by the Fermi-Dirac distribution(14). Therefore, the critical
points (first variations) of the variational problems(12) and
(15) are the same. However, the stability of the system(re-
garding the second variations) can be different in microca-
nonical and canonical ensembles. When this happens, we
speak of a situation ofensemble inequivalence[4]. The sta-
bility of the system can be determined by a graphical con-
struction, by simply plotting the caloric curve/series of equi-
libria bsEd and using the turning point method of Katz
[22,23].

B. Thermodynamic parameters

Integrating the distribution function(14) over velocity, we
find that the density of particles is related to the gravitational
potential by

r =
h0SD2D/2−1

sbmdD/2 ID/2−1slebmFd, s17d

whereIn denotes the Fermi integral

Instd =E
0

+` xn

1 + texdx. s18d

We recall the identity

In8std = −
n

t
In−1std sn . 0d, s19d

which can be established from Eq.(18) by an integration by
parts. The gravitational potential is now obtained by substi-
tuting Eq.(17) in the Poisson equation(4). We introduce the
rescaled distancej=fSD

2 2D/2−1Gh0/ sbmdD/2−1g1/2r and the
variablesc=bmsF−F0d and k=lebmF0, where F0 is the
central potential. Thus, we get theD-dimensional Fermi-
Poisson equation
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1

jD−1

d

dj
SjD−1dc

dj
D = ID/2−1skecsjdd, s20d

cs0d = c8s0d = 0. s21d

As is well known, self-gravitating systems at nonzero
temperature have the tendency to evaporate. Therefore, there
is no equilibrium state in a strict sense and the statistical
mechanics of self-gravitating systems is essentially an out-
of-equilibrium problem. However, the evaporation rate is
small in general and the system can be found in a quasiequi-
librium state for a relatively long time. In order to describe
the thermodynamics of the self-gravitating Fermi gas rigor-
ously, we shall use an artifice and enclose the system within
a spherical box of radiusR (the box typically represents the
size of the cluster under consideration). In that case, the so-
lution of Eq. (20) is terminated by the box at the normalized
radius,

a = FSD
2 2D/2−1Gh0

sbmdD/2−1 G1/2

R. s22d

For a spherically symmetric configuration, the Gauss theo-
rem can be written

dF

dr
=

GMsrd
rD−1 , s23d

whereMsrd=e0
r rSDrD−1dr is the mass within the sphere of

radiusr. Applying this result atr =R and using the variables
introduced previously, we get

h ;
bGMm

RD−2 = ack8sad. s24d

This equation relates the dimensionless box radiusa and the
uniformizing variablek to the dimensionless inverse tem-
peratureh. According to Eqs.(22) and (24), a and k are
related to each other by the relationa2hD/2−1=m or, explic-
itly,

asD+2d/sD−2dck8sad = m2/sD−2d, s25d

where

m = h0
ÎSD

4 2D−2GDMD−2RDs4−Dd s26d

is the degeneracy parameter[20]. It should not be confused
with the chemical potential. We shall give a physical inter-
pretation of this parameter in Sec. IV B.

The calculation of the energy is a little more involved.
First, we introduce the local pressure

p =
1

D
E fv2dDv. s27d

Using the Fermi-Dirac distribution function(14), we find
that

p =
h0SD2D/2

DsbmdD/2+1ID/2skecd. s28d

The kinetic energyK=sD /2dep dDr can thus be written

KRD−2

GM2 =
as4+4D−D2d/sD−2d

m4/sD−2d E
0

a

ID/2skecksjddjD−1dj. s29d

In order to determine the potential energy, we use the
D-dimensional version of the virial theorem[12]. For
DÞ2, it reads

2K + sD − 2dW= DVDRDpsRd, s30d

whereVD=SD /D is the volume of a hypersphere with unit
radius(the D=2 case will be considered specifically in Sec.
IV F). Using the expression of the pressure(28) at the box
radiusR, we get

WRD−2

GM2 =
2

DsD − 2d
a2sD+2d/sD−2d

m4/sD−2d ID/2skecsadd −
2KRD−2

sD − 2dGM2 .

s31d

Combining Eqs.(29) and (31), we finally obtain

L ; −
ERD−2

GM2 =
4 − D

D − 2

as4+4D−D2d/sD−2d

m4/sD−2d

3E
0

a

ID/2skecksjddjD−1dj

−
2

DsD − 2d
af2sD+2dg/sD−2d

m4/sD−2d ID/2skecsadd. s32d

For D=3, Eqs.(24) and (32) return the expressions derived
in [20,4]. For a given value ofm and k, we can solve the
ordinary differential equation(20) until the value ofa at
which the condition(25) is satisfied. Then, Eqs.(24) and
(32) determine the temperature and the energy of the con-
figuration. By varying the parameterk (for a fixed value of
the degeneracy parameterm), we can determine the full ca-
loric curve/series of equilibriabsEd. Extending the results of
[4] in D dimensions, the entropy of each configuration, pa-
rametrized bya, is given by

S

NkB
= −

4 + 4D − D2

Ds4 − Dd
Lh + cksad +

h

D − 2

+ ln k −
2sD − 2d

D2s4 − Dd
a2D/sD−2d

m2/sD−2d ID/2skecksadd, s33d

and the free energy is given by

F = E − TS. s34d

In the microcanonical ensemble, a solution is stable if it cor-
responds to a maximum of entropySffg at fixed mass and
energy. In the canonical ensemble, the condition of stability
requires that the solution be a minimum of free energyFffg
at fixed mass and temperature. This mean-field approach is
exact in a thermodynamic limit such thatN→ +` with m ,h,
L fixed. If we fix h0 (i.e., ") and G, this implies that
RNsD−2d/fDs4−Ddg, TN−4/fDs4−Ddg, EN−s4D−D2+4d/fDs4−Ddg, SN−1,
and JN−1 approach a constant value forN→ +` (the free
energyF scales asNs4D−D2+4d/fDs4−Ddg). This is the quantum
thermodynamic limit (QTL) for the self-gravitating gas
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[4,16,24]. The usual thermodynamic limitN,R→ +` with
N/RD constant is clearly not relevant for inhomogeneous
systems whose energy is nonadditive.

III. ASYMPTOTIC LIMITS

A. The nondegenerate limit„m=`…

Before considering the case of an arbitrary degree of de-
generacy, it may be useful to discuss first the nondegenerate
limit corresponding to a classical isothermal gass"→0d. For
f !h0, the distribution function(14) reduces to the Maxwell-
Boltzmann formula

f =
h0

l
e−bmfsv2/2d+Fg, s35d

which can be written more conveniently as

f = Sbm

2p
DD/2

rsr de−bmsv2/2d. s36d

The density profile can be written

r = r0e
−csjd, s37d

wherer0 is the central density,j is the normalized distance

j = sSDGbmr0d1/2r , s38d

andc is the solution of theD-dimensional Emden equation

1

jD−1

d

dj
SjD−1dc

dj
D = e−c, s39d

with boundary conditions

cs0d = c8s0d = 0. s40d

This equation can be obtained from Eq.(20) by taking the
limit k→ +` and using the limiting form of the Fermi inte-
gral

Instd ,
1

t
Gsn + 1d st → + `d. s41d

From Eq.(36), we check that the local equation of state of a
classical self-gravitating isothermal gas ispsr d
=frsr d /mgkBT regardless of the dimension of space. The
thermodynamic parameters are given by

h = ac8sad, s42d

L =
Ds4 − Dd
2sD − 2d

1

ac8sad
−

1

D − 2

e−csad

c8sad2 , s43d

S− S0

NkB
= −

D − 2

2
ln h − 2 ln a + csad +

h

D − 2
− 2Lh,

s44d

S0

NkB
= ln m + ln S2pD/2

SD
D + 1 −

D

2
, s45d

wherea=sSDGbmr0d1/2R is the normalized box radius. For
D=2, the thermodynamic parameters can be calculated ana-
lytically [14]. Introducing the pressure at the boxP=psRd,
the global equation of state of the self-gravitating gas can be
written

PV

NkBT
=

1

D

a2

h
e−csad. s46d

We recall that the foregoing expressions can be expressed in
terms of the value of the Milne variablesu0=usad and v0

=vsad at the normalized box radius[7,25]. The structure and
the stability of classical isothermal spheres inD dimensions
have been studied in detail in[14]. The classical thermody-
namic limit (CTL) of self-gravitating systems, or dilute limit
[17], is such thatN→ +` with h, L fixed. If we takeb,1,
this implies thatR,N1/sD−2d andE,S,J,F,N. The physical
distinction between the QTL and the CTL is related to the
existence of long-lived gaseous metastable states as dis-
cussed in[24,16].

B. The completely degenerate limit

For b→ +` (i.e., T=0), the distribution function(14) re-
duces to a step function:f =h0 if vøvF and f =0 if vùvF,
where vFsr d=Î2sm /m−Fd is the local Fermi velocity. In
that case, the density and the pressure can be explicitly
evaluated,

r =E
0

vF

h0SDvD−1dv = h0SD
vF

D

D
, s47d

p =
1

D
E

0

vF

h0SDvD+1dv = h0
SD

D

vF
D+2

D + 2
. s48d

Eliminating the Fermi velocity between these two expres-
sions, we find that the equation of state of a cold Fermi gas
in D dimensions is

p = Kr1+2/D, K =
1

D + 2
S D

h0SD
D2/D

. s49d

This equation of state describes aD-dimensional classical
white dwarf star.(Throughout this paper, “white dwarf star”
or “fermion ball” will denote a completely degenerate self-
gravitating system. This terminology will be extended to any
dimension of space.) In D=3, classical white dwarf stars are
equivalent to polytropes with indexn=3/2 [11]. In D dimen-
sions, classical white dwarf stars are equivalent to polytropes
with index [12],

n3/2 =
D

2
. s50d

The structure and the stability of polytropic spheres inD
dimensions have been studied in detail in[12]. It is shown
that a polytrope of indexn is self-confined forn,n5=sD
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+2d / sD−2d and stable forn,n3=D / sD−2d. Therefore,
white dwarf stars(n=n3/2=D /2) are self-confined only for
D,2s1+Î2d and they are stable only forD,4. For Dù4,
quantum mechanics is not able to stabilize matter against
gravitational collapse. Thus,D=4 is a critical dimension re-
garding gravitational collapse.D=2 is also critical [14].
Therefore, the dimension of space of our Universe
2,D=3,4 lies between two critical dimensions.

We now introduce dimensionless parameters associated
with n3/2 polytropes which will be useful in the sequel. Their
density profile can be written

rsrd = r0uD/2sjd, s51d

wherer0 is the central density,j is the normalized distance

j = F2SDGr0
sD−2d/D

KsD + 2d G1/2

r , s52d

and u is the solution of theD-dimensional Lane-Emden
equation

1

jD−1

d

dj
SjD−1du

dj
D = − uD/2, s53d

with boundary conditions

us0d = 1, u8s0d = 0. s54d

This equation can be obtained from Eq.(20) by taking the
limit k→0 and using the limiting form of the Fermi integral,

Instd ,
s− ln tdn+1

n + 1
st → 0d. s55d

For D,2s1+Î2d, the solution of the Lane-Emden equation
(53) vanishes at a finite distancej1 defining the radiusR* of
the white dwarf star(complete polytrope). Using the results
of [12], the mass-radius relation ofD-dimensional white
dwarf stars is given by

MsD−2d/DR*
4−D =

KsD + 2d
2GSD

2/D vD/2
sD−2d/D, s56d

where we have defined

vD/2 = − j1
sD+2d/sD−2du8sj1d. s57d

For 2,D,4, the massM decreases with the radiusR* ,
while for D,2 and for 4,D,2s1+Î2d it increases with
the radius(see Fig. 1). The mass-radius relation(56) exhibits
the two critical dimensions of spaceD=2 and D=4 dis-
cussed previously. ForD=2, the radius is independent of
mass, and forD=4 the mass is independent of radius(see
Sec. IV). The energy of a self-confined white dwarf star is

E = − lD/2
GM2

R*
D−2 , s58d

where

lD/2 =
Ds4 − Dd

sD − 2ds4 + 4D − D2d
. s59d

We note that the energy of a white dwarf star vanishes for
D=4. According to Poincaré’s theorem[10], this determines
the onset of instability. We thus recover the fact that com-
plete white dwarf stars are unstable forDù4 [12].

For D.2s1+Î2d, the density of ann3/2 polytrope never
vanishes(as n3/2.n5) and we need to confine the system
within a box of radiusR (incomplete polytrope) to avoid the
infinite mass problem. In that case, the white dwarf star ex-
erts a pressure against the box. White dwarf stars withR* .R
whenD,2s1+Î2d are also incomplete. They are arrested by
the box at the normalized radiusj=a with a
=h2SDGr0

sD−2d/D / fKsD+2dgj1/2R. As shown in[12], the nor-
malized mass and the normalized energy of the configuration
parametrized bya are given by

hP ;
M

SD
F 2SDG

KsD + 2dGD/sD−2d 1

RfDsD−4dg/sD−2d

= − asD+2d/sD−2du8sad, s60d

L ; −
ERD−2

GM2

=
− 2

D2 − 4D − 4
HDs4 − Dd

2sD − 2d F1 + sD − 2d
usad

au8sadG
+

2 − D

2 + D

usadsD+2d/2

u8sad2 J . s61d

In the present context, the normalized masshP is related to
the degeneracy parameterm by the relation

FIG. 1. The mass-radius relation for complete white dwarf stars
sT=0d in different dimensions of space. It clearly shows that the
dimensionD=3 in surrounded by two critical dimensionsD=2 and
D=4 at which either the radius or the mass is constant.
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hP = S2m

D
D2/sD−2d

. s62d

On the other hand, using Eqs.(56) and (58), the normalized
mass and the normalized energy of a self-confined white
dwarf star withR* ,R (complete polytrope) are given by

hP = vD/2SR*

R
DfsD−4dDg/sD−2d

s63d

L = lD/2S R

R*
DD−2

. s64d

Eliminating R* between these two relations, we obtain the
“mass-energy” relation

LhP
fsD − 2d2g/fDsD−4dg = lD/2svD/2dfsD − 2d2g/fDsD−4dg, s65d

which will be useful in our subsequent analysis.

IV. CALORIC CURVES IN VARIOUS DIMENSIONS

A. Series of equilibria and metastable states

We shall now determine the caloric curvebsEd of the
self-gravitating Fermi gas as a function of the degeneracy
parameterm for any dimension of spaceD. This study has
already been performed forD=3 in [4]. The critical points of
the Fermi-Dirac entropySffg at fixedE andM [i.e., the dis-
tribution functionsfsr ,vd which cancel the first-order varia-
tions of S at fixed E,M] form a series of equilibria param-
etrized by the uniformizing variablek. At each point in the
series of equilibria there corresponds a temperatureb and an
energyE determined by Eqs.(24) and(32). In this approach,
b is the Lagrange multiplier associated with the conservation
of energy in the variational problem(13). It also has the
interpretation of a kinetic temperature in the Fermi-Dirac
distribution (14). We can thus plotbsEd along the series of
equilibria. There can be several values of temperatureb for
the same energyE because the variational problem(12) can
have several solutions: a local entropy maximum(metastable
state), a global entropy maximum, and one or several saddle
points. We shall represent all these solutions on the caloric
curve because local entropy maxima(metastable states) are
in general more physical than global entropy maxima for the
time scales achieved in astrophysics. Indeed, the system can
remain frozen in a metastable gaseous phase for a very long
time. This is the case, in particular, for globular clusters and
for the gaseous phase of fermionic matter(at high energy and
high temperature). The time required for a metastable gas-
eous system to collapse is in general tremendously long and
increases exponentially with the numberN of particles(thus,
tlife→ +` in the thermodynamic limitN→ +`) [16]. This is
due to the long-range nature of the gravitational potential.
Therefore, metastable states are in reality stable states. At
high temperatures and high energies, the global entropy
maximum is not physically relevant[26,27,25,24]. Con-
densed objects(e.g., planets, stars, white dwarfs, fermion
balls, etc.) only form below a critical energyEc (Antonov
energy) [8,9,2] or below a critical temperatureTc (Jeans tem-

perature) [7], when the gaseous metastable phase ceases to
exist (spinodal point).

B. The case 2,D,4

We start to describe the structure of the caloric curve of
the self-gravitating Fermi gas for 2,D,4 (specifically
D=3). Let us first consider the Fermi gas atT=0 (white
dwarf stars). TheL -hP curve defined by Eqs.(60), (61), and
(65) is represented in Fig. 2. In the present context, it gives
the energy of the star as a function of its mass. Since the
curve does not present turning points, all the white dwarf star
configurations are stable. According to Eq.(56), for
2,D,4, the massM of a complete white dwarf star is a
decreasing function of its radiusR* . Therefore, if the system
is enclosed within a box, there exists a characteristic mass

M*sRd =
xD

h0
2/sD−2dGD/sD−2dR

−fDs4−Ddg/sD−2d s66d

such that forM .M*sRd the star is self-confinedsR* ,Rd
and forM ,M*sRd it is restricted by the box. In terms of the
dimensionless masshP, completen3/2 polytropes correspond
to hPùvD/2 and incompleten3/2 polytropes tohPøvD/2. For
2,D,4, there exists a stable equilibrium atT=0 for all
massM.

We now briefly describe the caloric curve for arbitrary
temperature and energy. A more complete description is
given in [4] for D=3. First, we note that, according to Eqs.
(26), (49), and(56),

m = m*sDdS R

R*
DfDs4−Ddg/2

, s67d

where

FIG. 2. The mass-energy relation for white dwarf starssT=0d in
D=3. There exists an equilibrium state for all mass. The white
dwarf star is self-confined ifM .M*sRd and box-confined if
M ,M*sRd.
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m*sDd ;
D

2
svD/2dsD−2d/2. s68d

Therefore, the degeneracy parameterm can be seen as the
ratio (with some power) between the size of the systemR
and the sizeR* of a white dwarf star with massM. Accord-
ingly, a small value ofm corresponds to a large “effective”
cutoff (played by Pauli’s exclusion principle) or, equiva-
lently, to a small system size. Alternatively, a large value of
m corresponds to a small “effective” cutoff or a large system
size. This gives a physical interpretation to the degeneracy
parameter. Form→ +` (i.e., "→0), we recover classical
isothermal spheres. In that case, the caloric curvebsEd forms
a spiral. For finite values ofm, the spiral unwinds due to the
influence of degeneracy and gives rise to a rich variety of
caloric curves(Fig. 3). For large systems, the caloric curve
has a Z shape(“dinosaur’s neck”) and for small systems it
has an N shape. The phase transitions in the self-gravitating
Fermi gas forD=3 and the notion of metastable states, spin-
odal points, critical points, collapse, explosion, and hyster-
esis are discussed in[4,27,24,16]. Similar notions are dis-
cussed in[28] for a hard-spheres gas. The ground state of the
self-gravitating Fermi gassT=0d corresponds to a white
dwarf star configuration. For givenm, its structure(radius,
energy) is determined by the intersection between theL-hP
curve in Fig. 2 and the line defined by Eq.(62). The “white
dwarf” is completesR* ,Rd for m.m*sDd and incomplete
sR* .Rd otherwise. Form.m*sDd, the normalized energy of
the white dwarf is given by

LmaxsD,md = lD/2S m

m*
Df2sD−2dg/fDs4−Ddg

. s69d

This is the ground state of the self-gravitating Fermi gas
corresponding to the asymptote in Fig. 4(this asymptote ex-
ists for all curves in Fig. 3 but is outside the frame). For
classical particless"=0d, there is no equilibrium state if en-
ergy and temperature are below a critical threshold[8,9]. In

that case, the system undergoes gravitational collapse and
forms binaries(in the microcanonical ensemble) or a Dirac
peak(in the canonical ensemble); see Appendixes A and B of
[14] and [25,24,16]. For self-gravitating fermions, an equi-
librium state exists for all values of temperature and for all
accessible energiessEùEgroundd. Gravitational collapse is ar-
rested by quantum pressure as first realized by Fowler[11].
We shall now show that this claim ceases to be true in di-
mensionDù4.

C. The case 4,D,2„1+Î2…

We now consider the case 4,D,2s1+Î2d (specifically
D=4.1). Let us first describe the Fermi gas atT=0.
The L-hP curve defined by Eqs.(60), (61), and(65) is rep-
resented in Fig. 5. ForD.4, the curveshPsad and Lsad
associated ton3/2 polytropes have their extrema at the same
point (see Appendix C of[12]). Therefore, theL-hP curve
presents a cusp atsL0,hP,cd. Past this point in the series of
equilibria, n3/2 polytropes are unstable. According to Eq.
(56), for D.4, the radiusR* of a self-confined white dwarf
star increases with its mass. ForM ,M*sRd, there exists self-
confined white dwarf star configurations. In terms of the di-
mensionless masshP, this corresponds tohPøvD/2 (see Fig.
5). However, such configurations are unstable since they lie
after the turning point[12]. Therefore, only incomplete(box-
confined) white dwarf stars can be stable inD.4. Inspecting
Fig. 5 again, we observe that these configurations exist only
below a critical mass

McsRd = hP,csDdSDRfDsD−4dg/sD−2dFKsD + 2d
2SDG

GD/sD−2d

.

s70d

For M .McsRd, there is no equilibrium state atT=0 for
D.4. In terms of the dimensionless masshP, equilibrium
states exist only forhP,hP,csDd.

FIG. 3. Caloric curve inD=3 for different values of the degen-
eracy parameter(various system sizes).

FIG. 4. Caloric curve inD=3 for small values of the degeneracy
parameter(small system sizes). For D,4, there exists an equilib-
rium state for all temperaturesT and all accessible energiesE
ùEground.
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The caloric curve for an arbitrary value of temperature
and energy is represented in Fig. 6. Form→ +`, we recover
the classical spiral[14]. For finite values ofm, there exists
equilibrium solutions at all temperatures only if
hP,hP,csDd. Using Eq.(62), this corresponds to

m ,
D

2
hP,csDdsD−2d/2 ; mcsDd. s71d

If m.mcsDd, or equivalently if M .M*sRd, there exists a
minimum energyEc=−LcGM2/RD−2 (which appears to be
positive) and a minimum temperatureTc=GM / shcR

D−2d be-
low which there is no equilibrium state(the values ofhc and

Lc depend onD andm) (see Figs. 6 and 7). In that case, the
system is expected to collapse. This is similar to the Antonov
instability (gravothermal catastrophe) for classical particles
[8,9]. Since we deal here with self-gravitating fermions, we
could expect that quantum pressure would arrest the col-
lapse. Our study shows that this is not the case forD.4.
Quantum mechanics cannot stabilize matter against gravita-
tional collapse anymore.

D. The caseD=4

The dimensionD=4 is special because it is the dimension
of space above which quantum pressure cannot balance grav-
ity anymore. Therefore,D=4 is critical and it deserves par-
ticular attention. First, consider the Fermi gas atT=0. It
corresponds to a polytrope of indexn3/2=n3 [12].
The L-hP curve defined by Eqs.(60), (61), and(65) is rep-
resented in Fig. 8. Since the curve is monotonic, the box-
confined n3/2 polytropes are stable and the completen3/2
polytropes are marginally stable. ForD=4, the mass of a
self-confined white dwarf star is independent of its radius,
see Eq.(56). It can be expressed in terms of fundamental
constants as

M limit =
v2

gS4
2

h4

m5G2 . 1.443 10−2 h4

m5G2 , s72d

wherev2.11.2(we have takeng=2 in the numerical appli-
cation). Mathematically, this is similar to Chandrasekhar’s
limiting mass for relativistic white dwarf stars equivalent to
n=3 polytropes inD=3 [15]. However, it is here a purely
classical(i.e., nonrelativistic) result. Relativistic effects will
be considered in a forthcoming paper[29]. The energy of the
self-confined white dwarf stars isE=0. Considering Fig. 8

FIG. 5. The mass-energy relation for white dwarf starssT=0d in
4,D,2s1+Î2d (specifically D=4.1). Self-confined white dwarf
stars are always unstable. Box-confined white dwarf stars exist only
for M ,McsRd. For M .McsRd, there is no equilibrium state.

FIG. 6. Caloric curve inD=4.1 for different values of the de-
generacy parameter. Form.mcsDd, there is no equilibrium state if
the temperature and the energy are too low. The reason for the
“gap” at kc is explained in Fig. 7.

FIG. 7. Graphical construction determining the value ofa for
given m and k (in D=4.1). According to Eq.(25), the normalized
box radiusa is solution of fsad=0, where fsjd=jsD+2d/sD−2dck8sjd
−m2/sD−2d. We see thata undergoes a discontinuity ask→kc. This
gives rise to the “gap” in Fig. 6 form=23. However, this gap is
essentially a mathematical curiosity since the lower part of the
curve (small k) is unstable anyway.
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again, we see that incomplete white dwarf stars exist only for
M ,M limit . In terms of the dimensionless masshP, this cor-
responds toh,hP,c=v2.11.2. ForM .M limit , there is no
equilibrium state atT=0. The caloric curve for an arbitrary
value of temperature and energy is represented in Fig. 9(see
an enlargement in Fig. 10). Its description is similar to that of
Sec. IV C. For M .M limit , or equivalently mùmc=2v2
.22.4, there exists a minimum energyEc=−LcGM2/R2 and
a minimum temperatureTc=GM / shcR

2d below which there
is no equilibrium state.

E. The DÐ2„1+Î2… case

The caloric curves forDù2s1+Î2d are similar to those of
Secs. IV C and IV D. There are, however, two main differ-

ences. ForDù10, the classical spiral ceases to exist[14].
Thus, the caloric curve does not wind up asm→ +` contrary
to Fig. 10. On the other hand, forDù2s1+Î2d, it is not
possible to construct self-confined white dwarf stars[12].
This is just a mathematical curiosity since complete white
dwarfs stars are unstable forD.4 anyway. This property
changes the unstable branch of theL-hP diagram without
consequence to the caloric curves. TheL-hP diagram is rep-
resented in Figs. 11 and 12. ForD.2s1+Î2d, it displays an
infinity of cusps towards the singular solutionsLs,hP,sd; see
Fig. 12. ForD=2s1+Î2d, there is just one cusp(see Fig. 11)
and the Lane-Emden equation(53) can be solved analyti-
cally. This corresponds to theD-dimensional Schuster solu-
tion obtained forn=n5 [12]. In that case, we find explicitly

FIG. 8. The mass-energy relation for white dwarf starssT=0d in
D=4. Self-confined white dwarf stars are marginally stable. They
have a unique massM limit independent of their radius. For
M ,M limit , the white dwarf star is box-confined. There is no equi-
librium state withM .M limit .

FIG. 9. Caloric curves inD=4 for different values of the degen-
eracy parameter. Form.mc=22.4, there is no equilibrium state if
the temperature and the energy are too low.

FIG. 10. Same as Fig. 9 for larger values ofm showing the
developement of the classical spiral recovered form→ +`.

FIG. 11. The mass-energy relation for white dwarf starssT=0d
in D=2s1+Î2d.
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u5 =
1

F1 +
j2

4s2 +Î2d
GÎ2

. s73d

The normalized mass and the normalized energy can be ex-
pressed as

hP =
a2+Î2

2s1 +Î2dF1 +
a2

4s2 +Î2d
G1+Î2

, s74d

L5 = − 2s1 +Î2dF1 +
a2

4s2 +Î2d
G2s1+Î2d 1

a2s2+Î2d

3E
0

a j1+2Î2

F1 +
j2

4s2 +Î2d
G2s1+Î2ddj. s75d

F. The caseD=2

Let us now consider smaller dimensions of space. The
dimensionD=2 is critical concerning gravitational collapse
as discussed in[14]. For D=2, the relevant Fermi integrals
are I0 and I1. By definition,

I0std =E
0

+` dx

1 + tex . s76d

Changing variables toy=ex, we easily find that

I0std = lnS1 +
1

t
D . s77d

Therefore, the Fermi-Poisson equation(20) becomes

1

j

d

dj
Sj

dc

dj
D = lns1 + k−1e−cd, s78d

cs0d = c8s0d = 0. s79d

On the other hand, using the identity(19), giving

I18std = −
1

t
lnS1 +

1

t
D , s80d

one finds that

I1std = −E
−1/t

0 lns1 − xd
x

dx= − Li2S−
1

t
D , s81d

where Li2 is the dilogarithm.
Consider first the Fermi gas atT=0. In D=2, a white

dwarf star is equivalent to a polytrope with indexn3/2=1.
The Lane-Emden equation can then be solved analytically
and we obtainu=J0sjd, whereJ0 is the Bessel function of
zeroth order. The density drops to zero atj1=a0,1.2.40, the
first zero ofJ0. Considering the mass-radius relation(56) in
D=2, we see that the radius is independent of mass. There-
fore, complete white dwarf stars in two dimensions all have
the same radius. It can be written in terms of fundamental
constants as

R* =
j1

2p
S h2

gm3G
D1/2

= 0.27
h

m3/2G1/2. s82d

The relation between the mass and the central density of the
white dwarf star is

M =
r0

4p2

h2

gm3G
j1uu18u, s83d

where u18=J08sa0,1d.−0.52. Thus, the density profile of a
two-dimensional white dwarf star can be written

rsrd = r0J0S j1r

R*
D . s84d

This is similar to the vorticity profile of a minimum enstro-
phy vortex in two-dimensional(2D) hydrodynamics[30,31].
The energy of a complete polytrope of indexn in D=2 is
E=−sn−1dGM2/8+s1/2dGM2 lnsR* /Rd with the convention
FsRd=0 [12]. Therefore, the energy of a 2D white dwarf star
is

E =
1

2
GM2 ln SR*

R
D . s85d

Two-dimensional white dwarf stars exist for any massM and
they are stable. Noting thatR* /R=sm* /md1/2=j1/Îm, where
m=4p2h0GR2, we can write the normalized energy of the
self-confined white dwarf star as

L =
1

2
ln SÎm

j1
D . s86d

Let us now consider the case of incomplete white dwarf stars
that are confined by the boxsR* .Rd. This corresponds to

FIG. 12. The mass-energy relation for white dwarf starssT=0d
in D=5.1.
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m,j1
2. Using Eq.(52), we find thata=Îm. Then, using the

results of[12], we find that the normalized energy of a box-
confined white dwarf star in two dimensions is

L = −
1

2

J0sÎmd
ÎmJ1sÎmd

. s87d

We now consider the self-gravitating Fermi gas at finite
temperatureTÞ0. According to Eq.(22) we havea=Îm.
Using Eq.(24), we obtain

h ; bGMm= Îmc8sÎmd. s88d

We need to calculate the energy specifically because the
expression(32) breaks down inD=2. The kinetic energy
K=ep d2r can be written

K

GM2 =
1

h2E
0

Îm

I1skecdj dj. s89d

On the other hand, using an integration by parts, the potential
energy is given by

W= −
1

4pG
E s¹Fd2 d2r , s90d

where we have takenFsRd=0. Introducing the dimension-
less quantities defined in Sec. II B, we get

W

GM2 = −
1

2h2E
0

Îm

c8sjd2j dj. s91d

Summing Eqs.(89) and(91), the total normalized energy of
the Fermi gas in two dimensions is

L ; −
E

GM2 = −
1

h2E
0

Îm

I1skecdj dj

+
1

2h2E
0

Îm

c8sjd2j dj. s92d

The corresponding caloric curve is plotted in Fig. 13. For
m→ +`, we recover the classical caloric curve displaying a
critical temperaturekBTc=GMm/4 [14]. Below Tc, a classi-
cal gas experiences a gravitational collapse and develops a
Dirac peak[14]. When quantum mechanics is taken into ac-
count, the collapse stops when the system becomes degener-
ate. The Dirac peak is replaced by a fermion ball surrounded
by a dilute halo. AtT=0, we have a pure Fermi condensate
without a halo. This is the ground state of the self-gravitating
Fermi gas corresponding to the vertical asymptotes in Fig.
13. Form,j1

2 (incomplete white dwarf stars), the minimum
energy is given by Eq.(87) and for m,j1

2 (complete white
dwarf stars) it is given by Eq.(86). This discussion concern-
ing the difference between Dirac peaks(for classical par-
ticles) and fermion balls(for quantum particles) in the ca-
nonical ensemble remains valid for 2øD,4. Note also that
there is no collapse(gravothermal catastrophe) in the micro-
canonical ensemble inD=2 [32,14].

G. The D,2 case

We finally conclude with theD,2 case(specificallyD
=1). First, we consider the Fermi gas atT=0. The L-hP
curve which gives the energy of the star as a function of its
mass is represented in Fig. 14. Since the curve does not
present turning points, all the white dwarf star configurations
are stable. According to Eq.(56), for D,2, the massM of a
complete white dwarf star increases with its radiusR* .
Therefore, forM ,M*sRd the star is self-confined and for

FIG. 13. Caloric curve inD=2 for different values of the de-
generacy parameter:m=2, 10,100, 103, 104, 105, and 106. For m
→ +`, we recover the classical caloric curve displaying a critical
temperatureTc. Below Tc, the system is expected to collapse and
create a Dirac peak(“black hole”). When quantum mechanics is
accounted for, the “black hole” is replaced by a “fermion ball.” This
result is generally valid for 2øD,4.

FIG. 14. The mass-energy relation for white dwarf starssT=0d
in D,2 (specificallyD=1). There exists an equilibrium state for all
mass. The white dwarf star is self-confined ifM ,M*sRd and box-
confined ifM .M*sRd.
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M .M*sRd it is restricted by the box. There exists a stable
equilibrium state atT=0 for all mass. In terms of the dimen-
sionless masshP, completen3/2 polytropes correspond to
hPøvD/2 and incompleten3/2 polytropes tohPùvD/2. This
situation is reversed with respect to that of Fig. 2.

The caloric curve for arbitrary temperature and energy is
represented in Fig. 15. Form→ +` (i.e., "→0), we recover
the curve obtained in[14] for classical isothermal systems.
The caloric curvebsEd is monotonic. Therefore, there is no
phase transition forD,2. Thus, the change in the caloric
curve due to quantum mechanics is not very important since
an equilibrium state(global maximum of entropy or free
energy) already exists for any accessible energyE and any
temperatureT in classical mechanics. Quantum mechanics,
however, changes the ground state of the system. The ground
state of the self-gravitating Fermi gassT=0d corresponds to a
white dwarf star configuration. Its structure(radius, energy)
is determined by the intersection between theL-hP curve in
Fig. 14 and the line defined by Eq.(62). The “white dwarf”
is completesR* ,Rd for m.m*sDd and incompletesR* .Rd
otherwise. Form.m*sDd, the normalized energy of the
white dwarf is given by Eq.(69). This is the ground state of
the self-gravitating Fermi gas corresponding to the asymp-
tote in Fig. 15. InD=1, it is possible to obtain more explicit
results. Using the results of[12], for n3/2=1/2 polytropes,
we have j1=s3p /4d1/2Gs5/3d /Gs7/6d.1.49 and uu18 u
=2/Î3.1.15. Therefore,v1/2=0.349 andm* =0.846. For
m.m* =0.846, the normalized energy of a complete white
dwarf star(ground state) is

Lmin = −
3

7
Sm*

m
D2/3

. s93d

V. CONCLUSION

In this paper, we have studied how the dimension of space
affects the nature of phase transitions in the self-gravitating

Fermi gas. Since this model has a fundamental interest in
astrophysics[6] and statistical mechanics[5], it is important
to explore its properties thoroughly even if we sacrifice for
practical applications. It is well known in statistical mechan-
ics that the dimension of space plays a crucial role in the
problem of phase transitions. For example, concerning the
Ising model, the behavior inD=1 and Dù2 is radically
different [33]. We have reached a similar conclusion for the
self-gravitating Fermi gas. The solution of the problem in
D,2 does not yield any phase transition. InD=2, phase
transitions appear in the canonical ensemble but not in the
microcanonical ensemble. InD.2, phase transitions appear
both in microcanonical and canonical ensembles in associa-
tion with gravitational collapse. The beauty of self-
gravitating systems, and other systems with long-range inter-
actions, is their simplicity since the mean-field
approximation is exact in any dimension. Therefore, the
mean-field theory doesnot predict any phase transition for
the self-gravitating Fermi gas inD=1, contrary to the Ising
model.

At a more philosophical level, several scientists have ex-
amined the role played by the dimension of space in deter-
mining the form of the laws of physics. This question goes
back to Ptolemy, who argued in his treatiseOn Dimension-
ality that no more than three spatial dimensions are possible
in Nature. In the 18th century, Kant realized the deep con-
nection between the inverse square law of gravitation and the
existence of three spatial dimensions. In the 20th century,
Ehrenfest[13] argued that planetary orbits, atoms, and mol-
ecules would be unstable in a space of dimensionDù4.
Other investigations on dimensionality are reviewed in the
paper by Barrow[34]. Although we ignored this literature at
the beginning, our study clearly joins in this type of investi-
gation. We have found that the self-gravitating Fermi gas
possesses a rich structure and displays several characteristic
dimensionsD=2, D=4, D=2s1+Î2d, andD=10. Moreover,
as already noted in[12], the dimensionD=4 is critical be-
cause at that dimension quantum mechanics cannot stabilize
matter against gravitational collapse, contrary to the situation
in D=3. Interestingly, this result is similar to that of Ehren-
fest, although it applies to white dwarf stars instead of atoms.
The dimensionD=2 is also critical, as found in[14] and in
different domains of physics. Therefore, the dimension of
our (macroscopic) UniverseD=3 plays a very special role
regarding the laws of physics(this is illustrated in Fig. 1).
Following the far-reaching intuition of Kant, we can wonder
whether the three space dimensions are a consequence of
Newton’s inverse square law, rather than the opposite. We
note also that extra dimensions can appear at the microscale,
an idea originating from Kaluza-Klein theory. This idea had
a renaissance in modern theories of grand unification. Our
approach shows that already at a simple level, the coupling
between Newton’s equations(gravitation) and Fermi-Dirac
statistics(quantum mechanics) reveals a rich structure as a
function of D. Relativistic effects will be considered in a
forthcoming paper[29].

Finally, our study can shed light on the mathematical
properties of the Vlasov-Poisson system. Indeed, there is a
close connection between collisionless stellar systems and
self-gravitating fermions[19,35,20,21]. For example, the fact

FIG. 15. Caloric curve inD=1 for different values of the de-
generacy parameter(various system sizes).
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that the Vlasov equation does not blow up(i.e., experiences
gravitational collapse) in D=3 for nonsingular initial condi-
tions can be related to a sort of exclusion principle, as in
quantum mechanics. Due to the Liouville theorem inm
space, the distribution function must remain smaller than its
maximum initial valuef øh0 and this prevents complete col-
lapse [20,36], unlike for collisional stellar systems[9] de-
scribed by the Landau-Poisson system. Since quantum me-
chanics cannot arrest gravitational collapse inDù4 (for

sufficiently low energies), this suggests that the Vlasov-
Poisson system can probably blow up forDù4. This remark
could be of interest for mathematicians.
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