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Statistical mechanics and thermodynamic limit of self-gravitating fermions inD dimensions
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We discuss the statistical mechanics of a system of self-gravitating fermions in a space of dirbe’win
plot the caloric curves of the self-gravitating Fermi gas giving the temperature as a function of energy and
investigate the nature of phase transitions as a function of the dimension of space. We consider stable states
(global entropy maximpas well as metastable statéscal entropy maximp We show that foD =4, there
exists a critical temperatuéor sufficiently large systemsand a critical energy below which the system cannot
be found in statistical equilibrium. Therefore, fbr=4, quantum mechanics cannot stabilize matter against
gravitational collapse. This is similar to a result found by Ehrenf&817) at the atomic level for Coulomb
forces. This makes the dimensiBr= 3 of our Universe very particular with possible implications regarding the
anthropic principle. Our study joins a long tradition of scientific and philosophical papers that examined how
the dimension of space affects the laws of physics.

DOI: 10.1103/PhysRevE.69.066126 PACS nunm)er05.90:+m, 64.60—i, 95.30—k, 05.70—a

I. INTRODUCTION atmosphere. Therefore, when quantum mechanics is properly

The statistical mechanics of systems with long-range in_accoun]:[ed for, there]:( exists an equilibrriumlsl(@k?cbal max'il;|
teractions is currently a topic of active reseafth Among  Mum of entropy or free energyor each value of accessible

long-range interactions, gravitational force plays a fundaSnergy and temperature. The condensate results from the bal-

mental role. Therefore, the developement of statistical me2NC€ between gravitational contraction and quantum pres-

chanics for self-gravitating systems is of considerable interSUré: As first noticed by Fowlgf1] in his classical theory of

est[2]. In this context, a system of self-gravitating fermions White dwarf stars, qua_mturln n|1|echan|cs is able to stabilize

enclosed within a box provides an interesting model whichMatter against gravitational collapse. o

can be studied in great det48,4]. This model incorporates One aim of this paper is to show that this conclusion is no
4. no . e

an effective small-scale cutoff played by the Pauli exclusionIonger valid in a space of dimensidn=4. For a system of

principle and a large-scale cutoff played by the confining box::n assM enclosed within @ box of radiuB, there exists a
(other forms of confinement could also be considgratie ritical temperaturgfor sufficiently largeR) and a critical

o : ; T A nergy below which the system cannot be found at statistical
statistical mechanics of this system is rigorously justified a”cgquilibrium. This is like the Antonov instability for self-

presents a lot of interesting features which are of interest i@ravitating classical particles iD=3 [8,9,2 but it now oc-
statistical mechanic$5] and astrophysicg6]. Its detailed  cyrs for fermions. Therefore, quantum mechanics cannot ar-
study is therefore important at a conceptual and practicalest gravitational collapse iD= 4. This result is connected
level. to our previous observatiofi2] that a classical white dwarf

In a previous papefd], we discussed the nature of phasestar (a polytrope of indexn,;,=D/2) becomes unstable for
transitions in the self-gravitating Fermi gas in a space oD =4. Interestingly, this result is similar to that of Ehrenfest
dimensionD=3. Our study was performed in both microca- [13], who considered the stability of atomic structur@s
nonical and canonical ensembles and considered an arbitraBohr’s mode) for different dimensions of space and con-
degree of degeneracy relative to the system size. This studyjuded thatD <4 is required for stability. In this paper, we
completes previous investigations by Hertel and ThirfiBly ~ determine the caloric curve of the self-gravitating Fermi gas
who worked in the canonical ensemble and considered smadfibr an arbitrary dimension of space and an arbitrary degree of
system sizes. At high temperatures and high energies, thiegeneracyor system size We exhibit particular dimen-
system is in a gaseous phase and quantum effects are cosiens that play a special role in the problem. The dimension
pletely negligible. At some transition temperatieor tran- D=2 is critical because the results establishedXef 2 can-
sition energyk; (for sufficiently large system sizgsa first- not be directly extended t®=2 [14]. Furthermore, in
order phase transition is expected to occur and drive th®=2 the radius of a white dwarf star is independent of its
system towards a condensed phase. However, gaseous stateass and given in terms of fundamental constants by
are still metastable below this transition point and gravita-R=0.27ni*2G Y2 The dimensiorD=4 is also critical be-
tional collapse will rather occur at a smaller critical tempera-cause it is the dimension at which classical white dwarf stars
ture T, (Jeans temperaturg7] or critical energyE, (Antonov ~ become unstable. At this particular dimension, their mass is
energy [8,9,2 at which the metastable branch disappeardndependent of radius and can be expressed in terms of fun-
(spinodal point The end state of the collapse is a compactdamental constants &8=1.44x 10?h*m >G™2. Mathemati-
object with a “core-halo” structure. Typically, it consists of a cally, this is similar to Chandrasekhar’s limiting mgd%]
degenerate nucleus surrounded by a “vapor.” The nucleu®r relativistic white dwarf stars irD=3. The dimension
(condensateresembles a white dwarf stfit0]. At nonzero D=2(1+y2) is also particular because at this dimension, the
temperature, this compact object is surrounded by a dilutevhite dwarf stars cease to be self-confined and have infinite
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mass. FinallyD=10 is the dimension at which the caloric 1 oo 1 5

curve of classical isothermal spheres loses its characteristic E=3 f fosd rdv+ 2 f pPd-r =K+W, 3)
spiral nature[14]. Although we systematically explore all

dimensions of space in order to have a complete picture ovhereK is the kinetic energy andlV the potential energy.
the problem, only dimensionB=1, D=2, andD=3 area  The gravitational potentiab is related to the density by the
priori of physical interest. The dimensi@=1 is considered Newton-Poisson equation

in cosmology and in connection with shell models, and the

dimensionD=2 can be useful to describe filaments or ring A® =SGp, (4)

structures with high aspect ratio. Two-dimensional gravity is’whereSD=27rD’2/F(D/2) is the surface of a unit sphere in a

also of interest for its properties of conformal invariance a”dspace of dimensioD, and G is the constant of gravity

for its relation with two-dimensional turbulengg]. Nonin- (which depends on the dimension of space

teger dimensic_)ns can grise if the system has a fractal nature. \ne now wish to determine the most probable distribution
_The paper is organized as follows. In Sec. II, we deteryf self.gravitating fermions at statistical equilibrium. To that

mine the thermodynamic parameters of the self-gravitating,q e divide the individual phase spdcev} into a very

Fermi gas in dimensio®. The Fermi-Dirac entropy is intro- large number of microcells with sizé/m)P, whereh is the

duced from a combinatorial analysis. In Sec. IlI, we Cons'derPlanck constantthe masam of the particles arises because

asymptc_)tic limits corresponding to the classical self—We usev instead ofp as a phase-space coordinatemicro-
gravitating gas and to cpmpletgly degenerate structuresy ig occupied either by 0 or 1 fermidor g=2s+1 fermi-
(white dwarfy. We emphasize the importance of metastable

. ) . . ons if we account for the spinWe shall now group these
states in astrophysms and explain how they can be taken NQicrocells into macrocells each of which contains many mi-
account in the theorysee also[16]). We also discuss the

h d i limit of th i itati i dcrocells but remains nevertheless small compared to the
ermodynamic imit ot the seli-gravitating guantum gas an phase-space extension of the whole system. We icilie

comaa;e it lw'th tlhe thgrr;;lod)éqa?lrlz_ li'{n't |0f Sthe lf/elf' number of microcells in a macrocell. Consider the configu-
gravitating classical gas in the dilute linfit7]. In Sec. IV, ration{n;} where there are, fermions in the first macrocell,

ematical results on the existence of solutidns of the Fermi[r_ucrocel!s with no Cth.ibltatlon' The number of ways 10 as-
Poisson equation have been obtained byita [18]. Fi- sign am|crocellto.the first element ofa.ma_crgceﬂ_zmo the
nally, in the Conclusion, we place our study in la moresecondv—l, etc. Since the parycles are |nd|st|ngp|shable, the

’ . . Lo umber of ways to assign microcells to all particles in a
general perspective. We give a short historical account o :

L ) . : acrocell is thus

scientific and philosophical papers that examined the role
played by the dimension of space in determining the form of 1
the laws of physics. These works tend to indicate that the
dimensionD=3 of our Universe is very particular. This is
also the result that we reach in our study. These remarks cafo obtain the number of microstates corresponding to the
have implications regarding the anthropic principle. macrostatdn;} defined by the number of fermiomsin each
macrocell(irrespective of their precise position in the ggll
we need to take the product of terms such(®sover all
macrocells. Thus, the number of microstates corresponding
A. The Fermi-Dirac distribution to the macrostatén;}, i.e., the probability of the staf@}, is

(5

! (v=n)!”

II. THERMODYNAMICS OF SELF-GRAVITATING
D-FERMIONS

We consider a system &f fermions interacting via New-
tonian gravity in a space of dimensi@n We assume that the w(in) =11
mass of the configuration is sufficiently small so as to ignore i
relativistic effects. Lef(r,v,t) denote the distribution func-
tion of the system, i.e.f(r,v,t)d°rd®v gives the mass of
particles whose position and velocity are in the dellv;r
+d°r,v+dPv) at timet. The integral off over the velocity S{n}) =In Win}). (7)
determines the spatial density

!
n;! (V_ ni)! '

(6)

This is the Fermi-Dirac statistics. As is customary, we define
the entropy of the statg;} by

It is convenient here to return to a representation in terms of

P (1) the distribution function giving the phase-space density in
p= vy the ith macrocell,
and the total mass of the configuration is given by nm n; 7
fi:f(ri,vi):ﬁ='70, (8)
M :fpdDr, (2) V(E)

where the integral extends over the entire domain. On th&here we have defineg,=mP*1/h®, which represents the
other hand, in the mean-field approximation, the total energynaximum value of due to Pauli’s exclusion principle. Now,
of the system can be expressed as using the Stirling formula, we have
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In W({niJ) f= o
_ _ m (12/2)+®]’
zEv(lr'l V—l)—V(L|:|n (V—f')—l] Lre?

7o 70 where\=e"#* is a strictly positive constarinverse fugac-
f. f. ity) and B=1/kgT is the inverse temperature. Clearly, the
+<1——') In y<1——'> -1 ) (9)

(14)

distribution function satisfieb< 7, which is a consequence
o o of Pauli’s exclusion principle.
So far, we have assumed that the system is isolated so that
the energy is conserved. If now the system is in contact with
a thermal batle.g., a radiation backgrounéixing the tem-

Passing to the continuum limit¢— 0, we obtain the usual
expression of the Fermi-Dirac entropy,

fFoof f \ | d®rdPv perature, the statistical equilibrium state minimizes the free
S:—kBJ —In—+ (1——)In<1——> IR energy F=E-TS or maximizes the Massieu function
o "o o o (D) J=S-BE, at fixed mass and temperature,
m

(10) Max J[f] [M[f]=M. (15)

. . . Introducing Lagrange multipliers and writing the variational
If we take into account the spin of the particles, the aboveprinciple in the form

expression remains valid but the maximum value of the dis-
tribution function is nowzn,=gnP*/hP, whereg=2s+1 is "
the spin multiplicity of the quantum stat¢the phase-space o+ ;5N =0, (16)
element has also to be multiplied lgy. An expression of

entropy similar to Eq(10), but arising for a completely dif- we find that thecritical points of free energy are again given
ferent reason, has been introduced by Lynden-Bell in thdy the Fermi-Dirac distributioril4). Therefore, the critical
context of the violent relaxation of collisionless stellar sys-points (first variations of the variational problemél2) and
tems[19-21]. In that context,n, represents the maximum (15) are the same. However, the stability of the systeea
value of the initial distribution function, and the actual dis- garding the second variationsan be different in microca-
tribution function (coarse-grained must always satisfy nonical and canonical ensembles. When this happens, we
f < 7, by virtue of the Liouville theorem. This is the origin SPeak of a situation oénsemble inequivalendd]. The sta-

of the “effective” exclusion principle in Lynden-Bell's bility of the system can be determined by a graphical con-
theory, which has nothing to do with quantum mechanicsstruction, by simply plotting the caloric curve/series of equi-
Since the particlegstarg are distinguishable classical objects libria B(E) and using the turning point method of Katz
(but subject to an exclusion principle in the collisionless re-[22,23.

gime), Lynden-Bell’'s statistics corresponds to a fourth form

of StatistiCS(in addition to the Maxwell-Boltzmann, Fermi- B. Thermodynamic parameters

Dirac, and Bose-Einstein statisticdHowever, for a single
type of phase elemeny, it leads to the same results as the
Fermi-Dirac statistics. We also recall that in the nondegene

Integrating the distribution functiofi14) over velocity, we
rI_ind that the density of particles is related to the gravitational

ate (or classical limit < 7,, the Fermi-Dirac entropy10)  Potential by
reduces to the Boltzmann entropy, oD/2-1
_ TS eBme
S:—ka —[ln ( +1) - 1]dDr dPv. (11
m gmP wherel, denotes the Fermi integral
Now that the entropy has been precisely justified, the sta- ey
tistical equilibrium state(most probable stafeof self- 1) = J dx. (18)
gravitating fermions is obtained by maximizing the Fermi- o l+te*
Dirac entropy(10) at fixed masg2) and energy3),
Py(10) e 3 We recall the identity
Max §f] | E[f]=E, M[f]=M. (12
, n
. . , WO ==l (n>0), (19
Introducing Lagrange multipliers T/(inverse temperatuye t

and u (chemical potentialto satisfy these constraints, and | _ ) .
writing the variational principle in the form which can be established from E{.8) by an integration by
parts. The gravitational potential is now obtained by substi-

1 P tuting Eq.(17) in the Poisson equatio@). We introduce the

5S- 1—_6E + ?5N =0, (13)  rescaled distanc&=[S32"2" G0/ (BM)>2 1Y% and the

variables = Bm(®-®d,) and k=\e’™o, where @, is the

we find that thecritical points of entropy correspond to the central potential. Thus, we get tHe-dimensional Fermi-
Fermi-Dirac distribution Poisson equation
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1 d( p.dy)_ ” KRD=2 (4+4D-D)I(D-2) ra )
F_d_g<§ d_g _ID/Z—l(ke )l (20) GM2 = ILLM(D_Z) fo ID/Z(kel//k(g))gD ldf (29)
#(0) =/ (0)=0. (21) In order to determine the potential energy, we use the

_ o D-dimensional version of the virial theoreril2]. For
As is well known, self-gravitating systems at nonzerop 2 it reads

temperature have the tendency to evaporate. Therefore, there 5
is no equilibrium state in a strict sense and the statistical 2K+ (D -2)W=DVpR"p(R), (30

mechapic; of self-gravitating systems is essenti_ally an O.URivhereVD=SD/D is the volume of a hypersphere with unit
of-equilibrium problem. However, the evaporation rate ISradius(the D=2 case will be considered specifically in Sec.

small in general and the system can be found in a quasiequh-/ F). Using the expression of the pressug®) at the box
librium state for a relatively long time. In order to describe radiu.sR we get

the thermodynamics of the self-gravitating Fermi gas rigor-
ously, we shall use an artifice and enclose the system withinyygP-2 2 o2D*+2/(D-2) o 2KRP~2

a spherical box of radiuR (the box typically represents the GM?2 = D(D-2) u*0-2 I pya(ke®) ~ m
size of the cluster under consideratiom that case, the so-

lution of Eq.(20) is terminated by the box at the normalized (31
radius,

Combining Eqs(29) and(31), we finally obtain

/2~ 112
= {—%ZD jG”O R (22) ERP? _4-D o4+0D0-2
m)D/2-1 : A=- = -
(Bm) GMZ D-2 402
For a spherically symmetric configuration, the Gauss theo- @
rem can be written X j | oyo(ke/9) P 1gE
0
de _ GM(n) (23) 5 202102
ar - o - Ipia(ke®).  (32)
D(D _ 2) M4/(D_2) D/2

whereM(r)=[{, pSprP~1dr is the mass within the sphere of

radiusr. Applying this result ar =R and using the variables For D=3, Egs.(24) and(32) return the expressions derived
introduced previously, we get in [20,4). For a given value ofx andk, we can solve the

ordinary differential equatiorf20) until the value ofa at
which the condition(25) is satisfied. Then, Eqg24) and
(32) determine the temperature and the energy of the con-
. ) . . . figuration. By varying the parametér(for a fixed value of
This equation relates the dimensionless box radiasd the the degeneracy parametej, we can determine the full ca-
uniformizing variablek to the dimensionless inverse tem- |oric cyrve/series of equilibri@(E). Extending the results of

peratures. According to Egs.(22) and (24), « andk are 41in D dimensions. the entropy of each configuration. pa-
related to each other by the relatiaf7"'?~=pu or, explic- Ea]mletrizeé by Iis gi'ven by i e P

GM
n= BRD—_;" = agila). (24)

itly,
S 4 +4D - D?
(D+2)/(D-2) /1 _  2/(D-2) _ i
@ a) = , 25 —=——An+ +
Whla) = (25 NG~ D@_Dp) M@ 5T
where
2(D _ 2) a2D/(D—2) "
n= 770\!’$2D_2GDM D—ZRD(4—D) (26) +In k- D2(4 _ D) MZ/(D—Q) |D/2(kel//k ), (33)

is the degeneracy parame{@q]. It should not be confused and the free energy is given by

with the chemical potential. We shall give a physical inter-

pretation of this parameter in Sec. IV B. F=E-TS (34)
The calculation of the energy is a little more involved.

First, we introduce the local pressure In the microcanonical ensemble, a solution is stable if it cor-

responds to a maximum of entrojgf] at fixed mass and
B > D energy. In the canonical ensemble, the condition of stability
P=H f foed-v. (27)  requires that the solution be a minimum of free enefgfj
) o o ) ) at fixed mass and temperature. This mean-field approach is
Using the Fermi-Dirac distribution functio(il4), we find  exact in a thermodynamic limit such thidt— +o with u, 7,

that A fixed. If we fix 7 (i.e., &) and G, this implies that
S;,ZD/Z RN(D-2/[D(4-D)]  TN-4ID(4-D)] EN—(4D—D2+4)/[D(4—D)]' SNL,
p= sz—)mmlm(ke‘ﬁ). (28)  and JN'! approach a constant value fok— +o (the free

energyF scales agN“P-P*4/D(4-D)l) This s the quantum
The kinetic energyK=(D/2) [p d°r can thus be written thermodynamic limit (QTL) for the self-gravitating gas
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[4,16,24. The usual thermodynamic limil,R— +oo with 202 D
N/RP constant is clearly not relevant for inhomogeneous WB =Inp+In ( >+ 1 Y (45)
systems whose energy is nonadditive.
where a=(S;GBmpy) R is the normalized box radius. For
D=2, the thermodynamic parameters can be calculated ana-
- ASYMPTOTIC LIMITS lytically [14]. Introducing the pressure at the b&<=p(R),
A. The nondegenerate limit(u=) the global equation of state of the self-gravitating gas can be
Before considering the case of an arbitrary degree of del/ttén
generacy, it may be useful to discuss first the nondegenerate PV 142
limit corresponding to a classical isothermal gas-0). For NigT = B—e“”(“). (46)
f < 7, the distribution functior{14) reduces to the Maxwell- n
Boltzmann formula We recall that the foregoing expressions can be expressed in
terms of the value of the Milne variableg=u(a) and v,
f= @e—ﬂm[(v2/2)+<b], (35) =v(w) at the normalized box radiyg,25. The structure and

the stability of classical isothermal spheresDrdimensions
have been studied in detail [14]. The classical thermody-

which can be written more conveniently as namic limit (CTL) of self-gravitating systems, or dilute limit
D/2 [17], is such thaN— +2 with #, A fixed. If we takeS~ 1,
f= (3_”‘) p(r)e w2, (36)  this implies thaR~N"""? andE,S,J,F ~N. The physical
2m distinction between the QTL and the CTL is related to the
] i ) existence of long-lived gaseous metastable states as dis-
The density profile can be written cussed in24,18.
p=poe "9, (37)

B. The completely degenerate limit

For B— += (i.e., T=0), the distribution functior(14) re-
&= (SpGBmpy) H7r, (38)  duces to a step functiorf=1, if v<vg andf=0 if v=v,
where ve(r)=2(u/m-®) is the local Fermi velocity. In
and ¢ is the solution of théd-dimensional Emden equation that case, the density and the pressure can be explicitly

wherepy is the central density is the normalized distance

1 d dy evaluated,
gD—ld_§<§D_ld_§> =e”, (39 ~ JUF D-1g, = U,[:) 47)
P= ] 70Spv U—WOSDDi
with boundary conditions
v D+2
W0)= ¢/ (0) =0. (40) _1 f T a Dy = DV 48
p DJy S VM D+ 2 (48)

This equation can be obtained from EGO) by taking the o _ _
limit k— +o and using the limiting form of the Fermi inte- Eliminating the Fermi velocity between these two expres-

gral sions, we find that the equation of state of a cold Fermi gas
in D dimensions is
1
~ = : 1 ( D \*P
()~ T+ (t— +2) (41) D=KpH2D, K= ( ) @y
D+2\ 7S

From Eq.(36), we check that the local equation of state of apjs equation of state describesDadimensional classical

classical self-gravitating ~isothermal gas isp(r)  \yhite dwarf star(Throughout this paper, “white dwarf star”
=[p(r)/mlkgT regardless of the dimension of space. Theg “fermion ball” will denote a completely degenerate self-

thermodynamic parameters are given by gravitating system. This terminology will be extended to any
o dimension of spacgln D=3, classical white dwarf stars are
n=ay'(a), (42) equivalent to polytropes with index=3/2[11]. In D dimen-
sions, classical white dwarf stars are equivalent to polytropes
D(4-D) 1 1 e 43 with index[12],
“20-2 @ D-2g@? P b

Na2= 7 (50)

S-S D-2 7 - . .
m === Iny-2Ina+y(a)+ D-2_ 2A 7, The structure and the stability of polytropic spheresbin

dimensions have been studied in detail[12]. It is shown
(44) that a polytrope of index is self-confined fom<ns=(D
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+2)/(D-2) and stable forn<nz=D/(D-2). Therefore, 5

white dwarf stargn=ng,=D/2) are self-confined only for

D<2(1+2) and they are stable only f@ <4. ForD=4, D=

quantum mechanics is not able to stabilize matter against 4 [ D=3 il
gravitational collapse. Thu§ =4 is a critical dimension re- D=1

garding gravitational collapseD=2 is also critical[14].
Therefore, the dimension of space of our Universe 37

=3

2<D=3<4 lies between two critical dimensions. =
We now introduce dimensionless parameters associated=
with ng;, polytropes which will be useful in the sequel. Their 2r D=45 ]
density profile can be written
D=4
p(r) = potP'4(8), (51) 1
wherepg is the central density is the normalized distance
0
2g G020 112 0 2
é= SDL , (52) RIR,
K(D +2)

FIG. 1. The mass-radius relation for complete white dwarf stars

and ¢ is the solution of theD-dimensional Lane-Emden (T=0) in different dimensions of space. It clearly shows that the

equation dimensionD =3 in surrounded by two critical dimensioBs=2 and
D=4 at which either the radius or the mass is constant.
1 df,p.90 D/2
g S de =-6"", (53
N D(4-D) (59
with boundary conditions P27 (D-2)(4+4D-D?)"
#0)=1, 6'(0)=0. (54)

We note that the energy of a white dwarf star vanishes for

This equation can be obtained from H&O) by taking the D=4 According to Poincare's theorefi0], this determines
limit k— 0 and using the limiting form of the Fermi integral, the onset of instability. We thus recover the fact that com-
plete white dwarf stars are unstable D=4 [12].

(=Int)™t For D>2(1+2), the density of amg, polytrope never
In(t) ~ el (t—0). (55 vanishes(as ng,>ns) and we need to confine the system
within a box of radiusR (incomplete polytropeto avoid the
For D<2(1+12), the solution of the Lane-Emden equation infinite mass problem. In that case, the white dwarf star ex-
(53) vanishes at a finite distancg defining the radiu®. of ~ ©ItS @ pressure against the box. White dwarf stars Rith R
the white dwarf statcomplete polytrope Using the results WhenD <2(1+y2) are also incomplete. They are arrested by
of [12], the mass-radius relation dd-dimensional white theé box at the normalized radiust=a with «

dwarf stars is given by ={25,GpL PP I[K(D+2)]}¥2R. As shown in[12], the nor-
malized mass and the normalized energy of the configuration
_ n KD+2) parametrized byr are given by
M (D-2/DRA-D — ZG%/D w(DD/ZZ)/D' (56)
M ZSDG D/(D-2) 1
where we have defined = S| KD +2) RIDD-4]/(D-2)
wpp =~ &7 (&y). (57) =~ P02 (q), (60)
For 2<D <4, the massM decreases with the radilg.,
while for D<2 and for 4<D<2(1+v2) it increases with _ ERP?
the radiugsee Fig. 1. The mass-radius relatiab6) exhibits A=- GM?
the two critical dimensions of spade=2 and D=4 dis-
cussed previously. Fob=2, the radius is independent of - ~2 D(4_D)[1+(D—2) Aa) }
mass, and foD=4 the mass is independent of radiisee D?-4D-4| 2(D-2) ab'(a)
Sec. IV). The energy of a self-confined white dwarf star is 2 - D ¢(a)0*272
— (61)
GM? 2+D 6¢'(a)
E=- )\D/zﬁ ’ (58)

In the present context, the normalized magsis related to
where the degeneracy parameterby the relation
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2/1/ 2/(D—2) 200 T T T T /
7P = (E) : (62) Complete //
D=3 polytropes /
On the other hand, using Eq&6) and(58), the normalized (stable) /
mass and the normalized energy of a self-confined white 150 | 1
dwarf star withR. <R (complete polytropgare given by ;’3;»2
R, \[(D-4DJ/(D-2) e
= wD/Z(E) (63 & 100 |- .
R D-2
A= )\D/2< E) . (64) 50 Incomplete B
* polytropes
Eliminating R. between these two relations, we obtain the (stable)
“mass-energy” relation

)[(D - 2)2]/[D(D—4)]' (65) 0-0.5 -0.3 -6.1 0f1 0.3 0.5

D - 22)[D(D-4)] —
A7~ 2YDO-4] - A=—ER"ZGM®

Aor2(@wpy2
which will be useful in our subsequent analysis. ) ) )

FIG. 2. The mass-energy relation for white dwarf s{@s0) in
D=3. There exists an equilibrium state for all mass. The white

IV. CALORIC CURVES IN VARIOUS DIMENSIONS dwarf star is self-confined ifM>M.(R) and box-confined if
M <M« (R).
A. Series of equilibria and metastable states "

We shall now determine the caloric cury®E) of the  peraturg [7], when the gaseous metastable phase ceases to
self-gravitating Fermi gas as a function of the degeneracygxist(spinodal point
parameteru for any dimension of spacB. This study has
already been performed f@=3 in [4]. The critical points of
the Fermi-Dirac entropy f] at fixedE and M [i.e., the dis-
tribution functionsf(r,v) which cancel the first-order varia- We start to describe the structure of the caloric curve of
tions of S at fixed E,M] form a series of equilibria param- the self-gravitating Fermi gas for 2D <4 (specifically
etrized by the uniformizing variablk. At each point in the D=3). Let us first consider the Fermi gas @t0 (white
series of equilibria there corresponds a tempergBuaed an  dwarf star$. The A - 7p curve defined by Eq60), (61), and
energyE determined by Eqg24) and(32). In this approach, (65) is represented in Fig. 2. In the present context, it gives
B is the Lagrange multiplier associated with the conservatiorthe energy of the star as a function of its mass. Since the
of energy in the variational problerl3). It also has the curve does not present turning points, all the white dwarf star
interpretation of a kinetic temperature in the Fermi-Diracconfigurations are stable. According to E@56), for
distribution (14). We can thus plojB(E) along the series of 2<D <4, the masdM of a complete white dwarf star is a
equilibria. There can be several values of temperagifer ~ decreasing function of its radius.. Therefore, if the system
the same energl because the variational probleit2) can  is enclosed within a box, there exists a characteristic mass
have several solutions: a local entropy maximgmetastable
statg, a global entropy maximum, and one or several saddle XD
points. We shall represent all these solutions on the caloric M-(R) =
curve because local entropy maxirfraetastable statgsre

in general more physical than global entropy maxima for thesuch that forM >M.(R) the star is self-confinedR. <R)

time scales achieved in astrophysics. Indeed, the system Cad forM < M. (R) it is restricted by the box. In terms of the

remain f_ro;en ina met_astabk_a gaseous phase for a very lon mensionless masgp, completens, polytropes correspond
time. This is the case, in particular, for globular clusters an .
oo ; 0 7p= wpyp and incompletens,, polytropes tonp < wp,. For

for the gaseous phase of fermionic mattrhigh energy and ) -

: : X 2<D<4, there exists a stable equilibrium at0 for all
high temperatune The time required for a metastable 9as- o coM
eous system to collapse is in general tremendously long and : . . . .
. : ; : We now briefly describe the caloric curve for arbitrary
increases exponentially with the numbe¢of particles(thus, L

temperature and energy. A more complete description is

tjire — +o° in the thermodynamic limiN— +o0) [16]. This is . . _ ; .
due to the long-range nature of the gravitational potential(‘]"\/en in[4] for D=3. First, we note that, according to Eqs.

Therefore, metastable states are in reality stable states. L%G)’ (49), and(56),
high temperatures and high energies, the global entropy [D(4-D)]/2
maximum is not physically relevanf26,27,25,24 Con- M:M*(D)(B)
densed objectge.g., planets, stars, white dwarfs, fermion R«

balls, etc) only form below a critical energ¥. (Antonov

energy [8,9,2 or below a critical temperaturk. (Jeans tem- where

B. The case ZXD<4

—AD - [D@-D)JI(D-2) (66)
/(D— -
7](2) (D-2)D/(D-2)

: (67)
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3.5 35 T T

(

Incomplete =10 Complete |
3 3l polytrope polytrope : ]

k<1 |

|
25 25 1 p=10 : |

g § '
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3 s |
215 215 =

= = |
1 1 | : 1

| |

| I
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| |

k>>1 | |

0 1 | 1 1 0 . | [ 1 |
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.
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FIG. 3. Caloric curve irD=3 for different values of the degen-

. . FIG. 4. Caloric curve irD=3 for small values of the degeneracy
eracy parametgvarious system sizes

parameteismall system sizgsFor D <4, there exists an equilib-

rium state for all temperature$ and all accessible energids
_Db (D-2)/2 = Eground

ux(D) = 2(‘”0/2) : (68)

that case, the system undergoes gravitational collapse and

Therefore, the degeneracy parametecan be seen as the forms binarie(in the microcanonical ensembler a Dirac

ratio (with some power between the size of the systeR  peak(in the canonical ensemblesee Appendixes A and B of

and the sizeR. of a white dwarf star with mashl. Accord-  [14] and [25,24,16. For self-gravitating fermions, an equi-

ingly, a small value ofu corresponds to a large “effective” Jibrium state exists for all values of temperature and for all

cutoff (played by Pauli's exclusion principleor, equiva-  accessible energigg = Eqq,d- Gravitational collapse is ar-

|ent|y, to a small SyStem size. Alternatively, a |arge value Ofrested by quantum pressure as first realized by FO[MH[

w corresponds to a small “effective” cutoff or a large systemwe shall now show that this claim ceases to be true in di-
size. This gives a physical interpretation to the degeneracyhensionD = 4.

parameter. Foru— + (i.e., i—0), we recover classical _

isothermal spheres. In that case, the caloric cy#E forms C. The case 4D <2(1+\2)

a spiral. For finite values g, the spiral unwinds due to the We now consider the case<4D<2(1+\s“§) (specifically
influence of degeneracy and gives rise to a rich variety 0b=4.1). Let us first describe the Fermi gas at=0.
caloric curvegFig. 3). For large systems, the caloric curve The A-7p curve defined by Eqg60), (61), and(65) is rep-
has a Z shapg‘dinosaur’s neckj and for small systems it resented in Fig. 5. Fob >4, the curvesyp(a) and A(a)
has an N shape. The phase transitions in the self-gravitatingssociated tmy, polytropes have their extrema at the same
Fermi gas folD=3 and the notion of metastable states, SPiNpoint (see Appendix C of12]). Therefore, theA-7p curve
odal points, critical points, collapse, explosion, and hysterpresents a cusp &\o, 7p,0). Past this point in the series of
esis are discussed i#,27,24,16. Similar notions are dis- gquilibria, ng;, polytropes are unstable. According to Eq.
cussed irf28] for a hard-spheres gas. The ground state of thesg) for D> 4, the radiusR. of a self-confined white dwarf
self-gravitating Fermi gasT=0) corresponds to a white  gpar increases with its mass. Adr< M« (R), there exists self-
dwart star configuration. For givep, its structure(radius,  ¢onfined white dwarf star configurations. In terms of the di-
energy is determined by the intersection between #ep  ansionless masss, this corresponds tgp < wp), (See Fig.
curve in Fig. 2 and the line defined by E@2). The “white 5 iqever, such configurations are unstable since they lie
dwarf” is complete(R. <R) for > 1.(D) and incomplete  afier the turning poinf12]. Therefore, only incompletébox-
(R.>R) otherwise. Fop> u«(D), the normalized energy of - confined white dwarf stars can be stablelr> 4. Inspecting

the white dwarf is given by Fig. 5 again, we observe that these configurations exist only
[2(D-2)J[D(4-D)] below a critical mass
AmadD,p) =X (—) (69) D/(D-2)
me P2\ e M(R) = 7p(D)S,ROO-410-2| KO *2)

25,G

This is the ground state of the self-gravitating Fermi gas (70)
corresponding to the asymptote in Fig(this asymptote ex-

ists for all curves in Fig. 3 but is outside the fram&or  For M>M(R), there is no equilibrium state &t=0 for
classical particle$2=0), there is no equilibrium state if en- D>4. In terms of the dimensionless masgg, equilibrium
ergy and temperature are below a critical thresh8ld]. In  states exist only fomp< 7p (D).
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10 T T 20 T T
Incomplete
" polytropes Df;é1
Complete N (unstable) _ 15 - W= k=107 T
polytropes a:’é Pe
- 10 | ]
(unstable) o
9t =T |
IS 5+ k=107 1
2 £ o
= Incomplete =
polytropes k=10
8 (stable) 5 r g
D=4.1
10 N
15 | N
7 L L 1 _20 1 1 1 1
-0.1 -0.08 -0.06 -0.04 0 2 4 6 8 10
A=ER**/GM? &
FIG. 5. The mass-energy relation for white dwarf s@rs0) in FIG. 7. Graphical construction determining the valueaofor

4<D<2(1+y2) (specifically D=4.1). Self-confined white dwarf given x andk (in D=4.1). According to Eq.(25), the normalized
stars are always unstable. Box-confined white dwarf stars exist onlgox radiusa is solution of f(@)=0, wheref(&)=¢£P*2/P-2y ()
for M<M(R). For M >M(R), there is no equilibrium state. - 1?02 \We see thatr undergoes a discontinuity &s— k.. This
gives rise to the “gap” in Fig. 6 fop=23. However, this gap is
The caloric curve for an arbitrary value of temperatureessemia”y a mathematical curiosity since the lower part of the
and energy is represented in Fig. 6. Fors +o, we recover ~curve(smallk) is unstable anyway.
the classical spira]14]. For finite values ofu, there exists
equilibrium solutions at all temperatures only if Acdepend orD andu) (see Figs. 6 and)7In that case, the
7p<7p(D). Using Eq.(62), this corresponds to system is expected to collapse. This is similar to the Antonov
instability (gravothermal catastrophéor classical particles
(0-2)i2 _ [8,9]. Since we deal here with self-gravitating fermions, we
M= E”P,C(D) = p(D). (71) could expect that quantum pressure would arrest the col-
lapse. Our study shows that this is not the caselfor4.
If w>pu(D), or equivalently ifM>M.(R), there exists a Quantum mechanics cannot stabilize matter against gravita-
minimum energyE.=-A,GM?/RP~2 (which appears to be tional collapse anymore.
positive) and a minimum temperatu®=GM/(7.R°?) be-
low which there is no equilibrium stat¢he values ofy. and D. The caseD=4

15 . . . . The dimensiorD_:4 is special because it is the dimension
Incomplete of space above which quantum pressure cannot balance grav-
polytrope u=15<p, ity anymore. ThereforeD =4 is critical and it deserves par-
ticular attention. First, consider the Fermi gasTatO. It

i corresponds to a polytrope of indexs,=n; [12].
The A-7p curve defined by Eqg60), (61), and(65) is rep-
resented in Fig. 8. Since the curve is monotonic, the box-
confined ng;, polytropes are stable and the completg,

- polytropes are marginally stable. FBr=4, the mass of a
self-confined white dwarf star is independent of its radius,
see Eq.(56). It can be expressed in terms of fundamental
constants as

11

BGMm/R"?
~

n:

h* h*
— — 2
Miimit = g_SEmSGZ =1.44X 10" TEG2’
. : wherew,=11.2(we have takemy=2 in the numerical appli-
-2 15 T 0 05 cation. Mathematically, this is similar to Chandrasekhar’s
A=-ER™’/GM - A . ;
limiting mass for relativistic white dwarf stars equivalent to
FIG. 6. Caloric curve irD=4.1 for different values of the de- N=3 polytropes inD=3 [15]. However, it is here a purely
generacy parameter. Fpr> u(D), there is no equilibrium state if ~classical(i.e., nonrelativistig result. Relativistic effects will
the temperature and the energy are too low. The reason for thee considered in a forthcoming paf@e]. The energy of the
“gap” at k. is explained in Fig. 7. self-confined white dwarf stars E§=0. Considering Fig. 8

(72)

k<<1 k.
-1 L L
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FIG. 8. The mass-energy relation for white dwarf s{@s0) in
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-1.1

0.5
-1.3

0.7 -0.5 -0.3

=ER™¥GM

-0.9 -0.1

FIG. 10. Same as Fig. 9 for larger values @fshowing the

D=4. Self-confined white dwarf stars are marginally stable. TheydeveIOpemem of the classical spiral recoverediop +e.

have a unique masd;,; independent of their radius. For

M <Mmit, the white dwarf star is box-confined. There is no equi-

librium state withM > M -

again, we see that incomplete white dwarf stars exist only fo

M < Miimit- In terms of the dimensionless mags, this cor-
responds top<p.=w,=11.2. FOrM > M, there is no
equilibrium state af=0. The caloric curve for an arbitrary
value of temperature and energy is represented in Hige®
an enlargement in Fig. 10lts description is similar to that of
Sec. IVC. For M>M,i, or equivalently u= u.=2w,
=22.4, there exists a minimum energy=-A.GM?/R? and
a minimum temperatur&.=GM/(7,R?) below which there
is no equilibrium state.

E. The D=2(1+?2) case

The caloric curves fob=2(1+ \5) are similar to those of
Secs. IV C and IV D. There are, however, two main differ-

Incomplete
polytrope

-
[}

D=4

u=23

- -
n 3]

BGMm/R>?
©

N

n=25

-0.3
A=—ER™¥/GM?

-0.7 -0.5 0.1

FIG. 9. Caloric curves il =4 for different values of the degen-
eracy parameter. FqQi> u.=22.4, there is no equilibrium state if
the temperature and the energy are too low.

ences. FoiD =10, the classical spiral ceases to eXis4].
Thus, the caloric curve does not wind upgas- + contrary
fo Fig. 10. On the other hand, fdd=2(1+2), it is not
possible to construct self-confined white dwarf stftg].
This is just a mathematical curiosity since complete white
dwarfs stars are unstable f&>4 anyway. This property
changes the unstable branch of then, diagram without
consequence to the caloric curves. Thegp diagram is rep-
resented in Figs. 11 and 12. Fdr>2(1+12), it displays an
infinity of cusps towards the singular solutiofs, 7p ¢); see
Fig. 12. ForD=2(1+.2), there is just one cusfsee Fig. 11
and the Lane-Emden equati@b3) can be solved analyti-
cally. This corresponds to the-dimensional Schuster solu-
tion obtained fom=ng [12]. In that case, we find explicitly

5 T T T
D=4.82842...
4 L nP,c i
3 [ |
&

2 . -
Incomplete /
polytropes
(unstable)

1r Incomplete 1

polytropes
(stable)
o 1 1
-8 -6 -4 -2 0
A=ER"?/GM®

FIG. 11. The mass-energy relation for white dwarf s{drs 0)
in D=2(1+2).
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FIG. 12. The mass-energy relation for white dwarf si@rs0)
in D=5.1.

1
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1d d_'r”) _ L
§d§<§d§ =In(1+k*e™), (78)
¥0)=¢'(0)=0. (79

On the other hand, using the identi}9), giving

|;(t):—%|n<1+%>, (80)

one finds that

% In(1-
|1(t)=‘J_M n( - X)

where L is the dilogarithm.

Consider first the Fermi gas d=0. In D=2, a white
dwarf star is equivalent to a polytrope with indey,=1.
The Lane-Emden equation can then be solved analytically
and we obtaind=Jy(&), whereJ, is the Bessel function of
zeroth order. The density drops to zer&at ag ;= 2.40, the
first zero ofJ,. Considering the mass-radius relati¢@®) in
D=2, we see that the radius is independent of mass. There-

dx=—Li2(— %) (81)

b5 = > 5 (73)  fore, complete white dwarf stars in two dimensions all have
{1 +§—_} the same radius. It can be written in terms of fundamental
4(2+v2) constants as
The normalized mass and the normalized energy can be ex- _& h? 1/2_ 027 h 82)
pressed as T om gntG TG
22 The relation between the mass and the central density of the
7= > i (74 white dwarf star is
—. o
2(l+\’2)|:1+—’—:| o h2
422 = sl (83
A7 gnt’G
Agz—2(1+42)| 1+ 2 |2 g where 6;=J(ap ) =-0.52. Thus, the density profile of a
5T v 42 +\2) 22212 two-dimensional white dwarf star can be written
&ir
o gl+2\f§ p(r)= PO‘]O<Ri . (84)
x f & 2002 96 (75) )
0 {1 +—,—} This is similar to the vorticity profile of a minimum enstro-
4(2+v2) phy vortex in two-dimensionglD) hydrodynamicg30,31.

F. The caseD=2

The energy of a complete polytrope of indexin D=2 is
E=—(n-1)GM?/8+(1/2)GM? In(R./R) with the convention
®(R)=0[12]. Therefore, the energy of a 2D white dwarf star

Let us now consider smaller dimensions of space. ThéS

dimensionD =2 is critical concerning gravitational collapse
as discussed ifl4]. For D=2, the relevant Fermi integrals

arely andl,. By definition,

e dx

Changing variables tg=¢€*, we easily find that

Io(t):ln<1+%>. (77)

Therefore, the Fermi-Poisson equati@®) becomes

1 R«
E=-GM?In (—) 85
> R (85
Two-dimensional white dwarf stars exist for any _mM;sand
they are stable. Noting th&./R=(u«/ u)?=¢&,/\u, where
w=4m21,GR, we can write the normalized energy of the
self-confined white dwarf star as

L (e
A—2In ( 51)' (86)

Let us now consider the case of incomplete white dwarf stars
that are confined by the bofR. >R). This corresponds to
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n< gﬁ. Using Eq.(52), we find thata= \,T.L Then, using the '
results of[12], we find that the normalized energy of a box-
confined white dwarf star in two dimensions is
1 Jo(Vu 1
=L ) (87)
2V pd(Vu) 10°
We now consider the self-gravitating Fermi gas at finite %
temperaturel # 0. According to Eq.(22) we havea=\u. &
Using Eq.(24), we obtain =
— ! r/_
7= BGMmM=uy' (V). (88) ]
We need to calculate the energy specifically because the
expression(32) breaks down inD=2. The kinetic energy
K=/p d?r can be written .
— 3
K 1 [ A=E/GM®
— = I, (ke & dé. 89
GM2 772J0 1( )§ § ( )

FIG. 13. Caloric curve irD=2 for different values of the de-
generacy parametep=2, 10,100, 18 10%, 10, and 16. For u
— +o0, we recover the classical caloric curve displaying a critical
temperaturel.. Below T, the system is expected to collapse and
1 create a Dirac peaK'black hole”. When quantum mechanics is
W=-—— [ (Vd)2d’r, (90) accounted for, the “black hole” is replaced by a “fermion ball.” This
47G result is generally valid for 2 D <4.

On the other hand, using an integration by parts, the potenti
energy is given by

where we have take®(R)=0. Introducing the dimension-
less quantities defined in Sec. Il B, we get G. The D<2 case

w 1 (Ve . We finally conclude with théD <2 case(specificallyD
GME :_ﬁf P (§)7E d¢. (91)  =1). First, we consider the Fermi gas &t0. The A-7p
0 curve which gives the energy of the star as a function of its
mass is represented in Fig. 14. Since the curve does not
present turning points, all the white dwarf star configurations
are stable. According to E@56), for D <2, the masdV of a

Summing Eqgs(89) and(91), the total normalized energy of
the Fermi gas in two dimensions is

E 1 (Ve complete white dwarf star increases with its radigs
A=- Y ?J l1(ke”) € dg Therefore, forM <M-(R) the star is self-confined and for
0
— 3 T
L[ werea (92

27]2 0 ' Incomplete

polytropes
The corresponding caloric curve is plotted in Fig. 13. For (stable)

u— +oo, we recover the classical caloric curve displayinga 2 r 1
critical temperaturégT,=GMm/4 [14]. Below T, a classi-

cal gas experiences a gravitational collapse and develops a _
Dirac peak[14]. When quantum mechanics is taken into ac-
count, the collapse stops when the system becomes degener
ate. The Dirac peak is replaced by a fermion ball surrounded 1 | 1

by a dilute halo. AfT=0, we have a pure Fermi condensate D=1

without a halo. This is the ground state of the self-gravitating ©n Complete
Fermi gas corresponding to the vertical asymptotes in Fig. Aoy Poly:)rIOpes
13. Foru< &€ (incomplete white dwarf staysthe minimum a=t, ~ (stable)
energy is given by Eq87) and for u< ¢ (complete white 0 ; - S~ )

dwarf starg it is given by Eq.(86). This discussion concern-
ing the difference between Dirac pealsr classical par-
ticles) and fermion balls(for quantum particlesin the ca- FIG. 14. The mass-energy relation for white dwarf si@rs 0)
nonical ensemble remains valid foD <4. Note also that in D <2 (specificallyD=1). There exists an equilibrium state for all
there is no collaps&gravothermal catastropp@ the micro-  mass. The white dwarf star is self-confinediif< M.(R) and box-
canonical ensemble iB=2 [32,14. confined ifM > M« (R).

A=—E/GM°R
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50 ‘ Fermi gas. Since this model has a fundamental interest in
1100 astrophysicg6] and statistical mechanig¢§], it is important
10 to explore its properties thoroughly even if we sacrifice for
40 - 7 practical applications. It is well known in statistical mechan-
5 ics that the dimension of space plays a crucial role in the
problem of phase transitions. For example, concerning the
. Ising model, the behavior iD=1 andD=2 is radically
different [33]. We have reached a similar conclusion for the
self-gravitating Fermi gas. The solution of the problem in
] D <2 does not yield any phase transition. In=2, phase
transitions appear in the canonical ensemble but not in the
microcanonical ensemble. D> 2, phase transitions appear
both in microcanonical and canonical ensembles in associa-
tion with gravitational collapse. The beauty of self-
gravitating systems, and other systems with long-range inter-
0 ‘ ‘ ‘ ‘ actions, is their simplicity since the mean-field
-0.8 -0.6 -0.4 -0.2 0 approximation is exact in any dimension. Therefore, the
A=-E/GM'R mean-field theory doesot predict any phase transition for
the self-gravitating Fermi gas iD=1, contrary to the Ising
model.

At a more philosophical level, several scientists have ex-
o ] . amined the role played by the dimension of space in deter-
M>M.(R) it is restricted by the box. There exists a stablemining the form of the laws of physics. This question goes
equilibrium state aT =0 for a.” mass. In terms of the dimen' back to Pto'emy, Who argued in h|s treat'@e Dimension_
sionless massye, completeng, polytropes correspond to  gjity that no more than three spatial dimensions are possible
7p= wp;; and incompletay, polytropes to7e=wpp. This  in Nature. In the 18th century, Kant realized the deep con-
situation is reversed with respect to that of Fig. 2. _nection between the inverse square law of gravitation and the

The caloric curve for arbitrary temperature and energy isxistence of three spatial dimensions. In the 20th century,
represented in Fig. 15. Far— + (i.e.,#—0), we recover  Ehrenfest{13] argued that planetary orbits, atoms, and mol-
the curve obtained ifi14] for classical isothermal systems. ecules would be unstable in a space of dimendior 4.

The caloric curveB(E) is monotonic. Therefore, there is N0 Other investigations on dimensionality are reviewed in the
phase transition foD <2. Thus, the change in the caloric paper by Barrow34]. Although we ignored this literature at
curve due to quantum mechanics is not very important sincéhe beginning, our study clearly joins in this type of investi-
an equilibrium state(global maximum of entropy or free gation. We have found that the self-gravitating Fermi gas
energy already exists for any accessible enefgynd any  possesses a rich structure and displays several characteristic
temperatureT in classical mechanics. Quantum mechanicsdimensionD=2, D=4, D:2(1+\s“§), andD=10. Moreover,
however, changes the ground state of the system. The groun@ ajready noted ifi12], the dimensiorD=4 is critical be-

state of the self-gravitating Fermi g&B=0) corresponds to a  cayse at that dimension quantum mechanics cannot stabilize
white dwarf star configuration. Its structugeadius, energy  matter against gravitational collapse, contrary to the situation
is determined by the intersection between fe), curve in - jn D=3. Interestingly, this result is similar to that of Ehren-
Fig. 14 and the line defined by E¢62). The “white dwarf”  fest, although it applies to white dwarf stars instead of atoms.
is complete(R- <R) for x> u.(D) and incompletéR.>R)  The dimensiorD=2 is also critical, as found ifiL4] and in
otherwise. Foru>u.(D), the normalized energy of the different domains of physics. Therefore, the dimension of
white dwarf is given by Eq(69). This is the ground state of our (macroscopig UniverseD=3 plays a very special role

the self-gravitating Fermi gas corresponding to the asympregarding the laws of physiaghis is illustrated in Fig. L

tote in Fig. 15. InD=1, it is possible to obtain more explicit Following the far-reaching intuition of Kant, we can wonder
results. Using the results ¢.2], for ng;,=1/2 polytropes, whether the three space dimensions are a consequence of
we have &=(3w/4)YI(5/3)/T(7/6)=1.49 and |6;]  Newton's inverse square law, rather than the opposite. We
=2/3=1.15. Therefore,w,,=0.349 andu.=0.846. For note also that extra dimensions can appear at the microscale,
n>u«=0.846, the normalized energy of a complete whitean idea originating from Kaluza-Klein theory. This idea had

BGMmR
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FIG. 15. Caloric curve irb=1 for different values of the de-
generacy parametgvarious system sizes

dwarf star(ground statgis a renaissance in modern theories of grand unification. Our
3 213 approach shows that already at a simple level, the coupling
Amin:__<&) (93)  between Newton’s equationgravitation and Fermi-Dirac
T\ u statistics(quantum mechaniggeveals a rich structure as a

function of D. Relativistic effects will be considered in a
forthcoming papef29].
V. CONCLUSION Final_ly, our study can shed light on the mathematiqal
properties of the Vlasov-Poisson system. Indeed, there is a
In this paper, we have studied how the dimension of spacelose connection between collisionless stellar systems and
affects the nature of phase transitions in the self-gravitatingelf-gravitating fermion$19,35,20,2]. For example, the fact
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that the Vlasov equation does not blow (., experiences
gravitational collapsein D=3 for nonsingular initial condi-

PHYSICAL REVIEW E69, 066126(2004)

sufficiently low energies this suggests that the Vlasov-
Poisson system can probably blow up & 4. This remark

tions can be related to a sort of exclusion principle, as ircould be of interest for mathematicians.

guantum mechanics. Due to the Liouville theorem gn

space, the distribution function must remain smaller than its

maximum initial valuef < 7y and this prevents complete col-
lapse[20,34, unlike for collisional stellar systemg] de-
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